

Secrets of the
JavaScript Ninja

JOHN RESIG
BEAR BIBEAULT

M A N N I N G
SHELTER ISLAND
Licensed to Maxeta Technologies <account@maxetatech.com>

For online information and ordering of this and other Manning books, please visit
www.manning.com. The publisher offers discounts on this book when ordered in quantity.
For more information, please contact

Special Sales Department
Manning Publications Co.
20 Baldwin Road
PO Box 261
Shelter Island, NY 11964
Email: orders@manning.com

©2013 by Manning Publications Co. All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in
any form or by means electronic, mechanical, photocopying, or otherwise, without prior written
permission of the publisher.

Many of the designations used by manufacturers and sellers to distinguish their products are
claimed as trademarks. Where those designations appear in the book, and Manning
Publications was aware of a trademark claim, the designations have been printed in initial caps
or all caps.

Recognizing the importance of preserving what has been written, it is Manning’s policy to have
the books we publish printed on acid-free paper, and we exert our best efforts to that end.
Recognizing also our responsibility to conserve the resources of our planet, Manning books
are printed on paper that is at least 15 percent recycled and processed without the use of
elemental chlorine.

Manning Publications Co. Development editors: Jeff Bleiel, Sebastian Stirling
20 Baldwin Road Technical editor: Valentin Crettaz
PO Box 261 Copyeditor: Andy Carroll
Shelter Island, NY 11964 Proofreader: Melody Dolab

Typesetter: Dennis Dalinnik
Cover designer: Leslie Haimes

ISBN: 978-1-933988-69-6
Printed in the United States of America
1 2 3 4 5 6 7 8 9 10 – MAL – 18 17 16 15 14 13 12
Licensed to Maxeta Technologies <account@maxetatech.com>

www.manning.com

brief contents
PART 1 PREPARING FOR TRAINING...1

1 ■ Enter the ninja 3

2 ■ Arming with testing and debugging 13

PART 2 APPRENTICE TRAINING ..29

3 ■ Functions are fundamental 31

4 ■ Wielding functions 61

5 ■ Closing in on closures 89

6 ■ Object-orientation with prototypes 119

7 ■ Wrangling regular expressions 151

8 ■ Taming threads and timers 175

PART 3 NINJA TRAINING..191

9 ■ Ninja alchemy: runtime code evaluation 193

10 ■ With statements 215

11 ■ Developing cross-browser strategies 229

12 ■ Cutting through attributes, properties, and CSS 253
iii

Licensed to Maxeta Technologies <account@maxetatech.com>

BRIEF CONTENTSiv
PART 4 MASTER TRAINING...287

13 ■ Surviving events 289

14 ■ Manipulating the DOM 329

15 ■ CSS selector engines 345
Licensed to Maxeta Technologies <account@maxetatech.com>

contents
preface xi
acknowledgments xiii
about this book xv
about the authors xx

PART 1 PREPARING FOR TRAINING1

1 Enter the ninja 3
1.1 The JavaScript libraries we’ll be tapping 4

1.2 Understanding the JavaScript language 5

1.3 Cross-browser considerations 6

1.4 Current best practices 9

Current best practice: testing 9 ■ Current best practice:
performance analysis 10

1.5 Summary 11

2 Arming with testing and debugging 13
2.1 Debugging code 14

Logging 14 ■ Breakpoints 16
v

Licensed to Maxeta Technologies <account@maxetatech.com>

CONTENTSvi
2.2 Test generation 17
2.3 Testing frameworks 19

QUnit 21 ■ YUI Test 22 ■ JsUnit 22
Newer unit-testing frameworks 22

2.4 The fundamentals of a test suite 22
The assertion 23 ■ Test groups 24 ■ Asynchronous testing 25

2.5 Summary 27

PART 2 APPRENTICE TRAINING.....................................29

3 Functions are fundamental 31
3.1 What’s with the functional difference? 32

Why is JavaScript’s functional nature important? 33
Sorting with a comparator 37

3.2 Declarations 40
Scoping and functions 43

3.3 Invocations 46
From arguments to function parameters 47 ■ Invocation as
a function 49 ■ Invocation as a method 50 ■ Invocation as
a constructor 52 ■ Invocation with the apply() and
call() methods 54

3.4 Summary 58

4 Wielding functions 61
4.1 Anonymous functions 62
4.2 Recursion 64

Recursion in named functions 64 ■ Recursion with methods 65
The pilfered reference problem 66 ■ Inline named functions 68
The callee property 70

4.3 Fun with function as objects 71
Storing functions 72 ■ Self-memoizing functions 73
Faking array methods 76

4.4 Variable-length argument lists 77
Using apply() to supply variable arguments 77
Function overloading 79

4.5 Checking for functions 86
4.6 Summary 88
Licensed to Maxeta Technologies <account@maxetatech.com>

CONTENTS vii
5 Closing in on closures 89
5.1 How closures work 90
5.2 Putting closures to work 94

Private variables 94 ■ Callbacks and timers 96

5.3 Binding function contexts 99
5.4 Partially applying functions 103
5.5 Overriding function behavior 106

Memoization 106 ■ Function wrapping 109

5.6 Immediate functions 111
Temporary scope and private variables 112 ■ Loops 115
Library wrapping 117

5.7 Summary 118

6 Object-orientation with prototypes 119
6.1 Instantiation and prototypes 120

Object instantiation 120 ■ Object typing via constructors 127
Inheritance and the prototype chain 128
HTML DOM prototypes 133

6.2 The gotchas! 135
Extending Object 135 ■ Extending Number 136
Subclassing native objects 137 ■ Instantiation issues 139

6.3 Writing class-like code 143
Checking for function serializability 146 ■ Initialization
of subclasses 147 ■ Preserving super-methods 148

6.4 Summary 150

7 Wrangling regular expressions 151
7.1 Why regular expressions rock 152
7.2 A regular expression refresher 153

Regular expressions explained 153 ■ Terms and operators 154

7.3 Compiling regular expressions 158
7.4 Capturing matching segments 161

Performing simple captures 161 ■ Matching using
global expressions 162 ■ Referencing captures 163
Non-capturing groups 165

7.5 Replacing using functions 166
Licensed to Maxeta Technologies <account@maxetatech.com>

CONTENTSviii
7.6 Solving common problems with regular expressions 168
Trimming a string 168 ■ Matching newlines 170
Unicode 171 ■ Escaped characters 172

7.7 Summary 172

8 Taming threads and timers 175
8.1 How timers and threading work 176

Setting and clearing timers 176 ■ Timer execution within
the execution thread 177 ■ Differences between timeouts
and intervals 179

8.2 Minimum timer delay and reliability 180
8.3 Dealing with computationally expensive processing 183
8.4 Central timer control 186
8.5 Asynchronous testing 189
8.6 Summary 190

PART 3 NINJA TRAINING ..191

9 Ninja alchemy: runtime code evaluation 193
9.1 Code evaluation mechanisms 194

Evaluation with the eval() method 194 ■ Evaluation via the
Function constructor 197 ■ Evaluation with timers 197
Evaluation in the global scope 198 ■ Safe code evaluation 199

9.2 Function “decompilation” 201
9.3 Code evaluation in action 204

Converting JSON 204 ■ Importing namespaced code 205
JavaScript compression and obfuscation 206 ■ Dynamic
code rewriting 208 ■ Aspect-oriented script tags 209
Metalanguages and DSLs 210

9.4 Summary 213

10 With statements 215
10.1 What’s with “with”? 216

Referencing properties within a with scope 216 ■ Assignments
within a with scope 218 ■ Performance considerations 219

10.2 Real-world examples 221
10.3 Importing namespaced code 223
Licensed to Maxeta Technologies <account@maxetatech.com>

CONTENTS ix
10.4 Testing 223
10.5 Templating with “with” 224
10.6 Summary 227

11 Developing cross-browser strategies 229
11.1 Choosing which browsers to support 230
11.2 The five major development concerns 231

Browser bugs and differences 232 ■ Browser bug fixes 233
Living with external code and markup 234
Missing features 239 ■ Regressions 240

11.3 Implementation strategies 242
Safe cross-browser fixes 242 ■ Object detection 243
Feature simulation 245 ■ Untestable browser issues 247

11.4 Reducing assumptions 249
11.5 Summary 251

12 Cutting through attributes, properties, and CSS 253
12.1 DOM attributes and properties 255

Cross-browser naming 256 ■ Naming restrictions 257
Differences between XML and HTML 257 ■ Behavior of
custom attributes 258 ■ Performance considerations 258

12.2 Cross-browser attribute issues 262
DOM id/name expansion 262 ■ URL normalization 264
The style attribute 265 ■ The type attribute 265
The tab index problem 266 ■ Node names 267

12.3 Styling attribute headaches 267
Where are my styles? 268 ■ Style property naming 270
The float style property 271 ■ Conversion of pixel values 271
Measuring heights and widths 272 ■ Seeing through
opacity 276 ■ Riding the color wheel 279

12.4 Fetching computed styles 282
12.5 Summary 285

PART 4 MASTER TRAINING...287

13 Surviving events 289
13.1 Binding and unbinding event handlers 290
13.2 The Event object 294
Licensed to Maxeta Technologies <account@maxetatech.com>

CONTENTSx
13.3 Handler management 297
Centrally storing associated information 298
Managing event handlers 300

13.4 Triggering events 309
Custom events 310

13.5 Bubbling and delegation 315
Delegating events to an ancestor 315 ■ Working around
browser deficiencies 316

13.6 The document ready event 324
13.7 Summary 326

14 Manipulating the DOM 329
14.1 Injecting HTML into the DOM 330

Converting HTML to DOM 331 ■ Inserting into
the document 334 ■ Script execution 336

14.2 Cloning elements 338
14.3 Removing elements 340
14.4 Text contents 341

Setting text 342 ■ Getting text 343

14.5 Summary 344

15 CSS selector engines 345
15.1 The W3C Selectors API 347
15.2 Using XPath to find elements 349
15.3 The pure-DOM implementation 351

Parsing the selector 353 ■ Finding the elements 354
Filtering the set 355 ■ Recursing and merging 356
Bottom-up selector engine 357

15.4 Summary 359

index 361
Licensed to Maxeta Technologies <account@maxetatech.com>

preface
When I started writing Secrets of the JavaScript Ninja years ago, in early 2008, I saw a real
need: there were no books providing in-depth coverage of the most important parts of
the JavaScript language (functions, closures, and prototypes), nor were there any
books that covered the writing of cross-browser code. Unfortunately, the situation has
not improved much, which is surprising.

 More and more development energy is being put into new technologies, such as
the ones coming out of HTML5 or the new versions of ECMAScript. But there isn’t any
point to diving into new technologies, or using the hottest libraries, if you don’t have a
proper understanding of the fundamental characteristics of the JavaScript language.
While the future for browser development is bright, the reality is that most develop-
ment needs to make sure that code continues to work in the majority of browsers and
for the majority of potential users.

 Even though this book has been under development for a long time, thankfully it
is not out of date. The book has been given a solid set of revisions by my coauthor,
Bear Bibeault. He’s made sure that the material will continue to be relevant for a long
time to come.

 A major reason why this book has taken so long to write is the experience upon
which I was drawing for the later chapters on cross-browser code. Much of my under-
standing of how cross-browser development happens in the wild has come from my
work on the jQuery JavaScript library. As I was writing the later chapters on cross-
browser development, I realized that much of jQuery’s core could be written differ-
ently, optimized, and made capable of handling a wider range of browsers.
xi

Licensed to Maxeta Technologies <account@maxetatech.com>

PREFACExii
 Perhaps the largest change that came to jQuery as a result of writing this book was a
complete overhaul from using browser-specific sniffing to using feature detection at the
core of the library. This has enabled jQuery to be used almost indefinitely, without
assuming that browsers would always have specific bugs or be missing specific features.

 As a result of these changes, jQuery anticipated many of the improvements to brows-
ers that have come during the past couple years: Google released the Chrome browser;
the number of user agents has exploded as mobile computing has increased in popu-
larity; Mozilla, Google, and Apple have gotten into a browser performance war; and
Microsoft has finally started making substantial improvements to Internet Explorer. It
can no longer be assumed that a single rendering engine (such as WebKit, or Trident in
Internet Explorer) will always behave the same way. Substantial changes are occurring
rapidly and are spread out to an ever-increasing number of users.

 Using the techniques outlined in this book, jQuery’s cross-browser capabilities pro-
vide a fairly solid guarantee that code written with jQuery will work in a maximum
number of browser environments. This guarantee has led to explosive growth in
jQuery over the past four years, with it now being used in over 57% of the top 10,000
websites on the Internet, according to BuiltWith.com.

 JavaScript’s relatively unchanging features, such as code evaluation, controversial
with statements, and timers, are continually being used in interesting ways. There are
now a number of active programming languages that are built on top of, or compiled
to, JavaScript, such as CoffeeScript and Processing.js. These languages require com-
plex language parsing, code evaluation, and scope manipulation in order to work
effectively. Although dynamic code evaluation has been maligned due to its complex-
ity and potential for security issues, without it we wouldn’t have had the CoffeeScript
programming language, which has gone on to influence the upcoming ECMAScript
specification itself.

 I’m personally making use of all of these features, even today, in my work at Khan
Academy. Dynamic code evaluation in the browser is a very powerful feature: you can
build in-browser programming environments and do crazy things like inject code into
a live runtime. This results in an extremely compelling way to learn computer pro-
gramming and provides new capabilities that wouldn’t be possible in a traditional
learning environment.

 The future for browser development continues to be very strong, and it’s largely
due to the features encapsulated in JavaScript and in the browser APIs. Having a solid
grasp of the most crucial parts of the JavaScript language, combined with a desire for
writing code that’ll work in many browsers, will enable you to create code that’s ele-
gant, fast, and ubiquitous.

 JOHN RESIG
Licensed to Maxeta Technologies <account@maxetatech.com>

acknowledgments
The number of people involved in writing a book would surprise most people. It took
a collaborative effort on the part of many contributors with a variety of talents to bring
the volume you are holding (or ebook that you are reading onscreen) to fruition.

 The staff at Manning worked tirelessly with us to make sure this book attained the
level of quality we hoped for, and we thank them for their efforts. Without them, this
book would not have been possible. The “end credits” for this book include not only
our publisher, Marjan Bace, and editor Mike Stephens, but also the following contribu-
tors: Jeff Bleiel, Douglas Pudnick, Sebastian Stirling, Andrea Kaucher, Karen Tegtmayer,
Katie Tennant, Megan Yockey, Dottie Marsico, Mary Piergies, Andy Carroll, Melody
Dolab, Tiffany Taylor, Dennis Dalinnik, Gabriel Dobrescu, and Ron Tomich.

 Enough cannot be said to thank our peer reviewers who helped mold the final
form of the book, from catching simple typos to correcting errors in terminology and
code, and helping to organize the chapters in the book. Each pass through a review
cycle ended up vastly improving the final product. For taking the time to review the
book, we’d like to thank Alessandro Gallo, André Roberge, Austin King, Austin
Ziegler, Chad Davis, Charles E. Logston, Chris Gray, Christopher Haupt, Craig
Lancaster, Curtis Miller, Daniel Bretoi, David Vedder, Erik Arvidsson, Glenn Stokol,
Greg Donald, James Hatheway, Jared Hirsch, Jim Roos, Joe Litton, Johannes Link,
John Paulson, Joshua Heyer, Julio Guijarro, Kurt Jung, Loïc Simon, Neil Mix, Robert
Hanson, Scott Sauyet, Stuart Caborn, and Tony Niemann.

 Special thanks go to Valentin Crettaz, who served as the book’s technical editor. In
addition to checking each and every sample of example code in multiple environments,
xiii

Licensed to Maxeta Technologies <account@maxetatech.com>

ACKNOWLEDGMENTSxiv
he also offered invaluable contributions to the technical accuracy of the text, located
information that was originally missing, and kept abreast of the rapid changes to
JavaScript and HTML5 support in the browsers.

 Special thanks also to Bert Bates, who provided invaluable feedback and sugges-
tions for improving the book. All those endless hours on Skype have certainly paid off.

John Resig
I would like to thank my parents for their constant support and encouragement over
the years. They provided me with the resources and tools that I needed to spark my
initial interest in programming—and they have been encouraging me ever since.

Bear Bibeault
For this, my fifth published tome, the cast of characters I’d like to thank has a long list
of “usual suspects,” including, once again, the membership and staff at javaranch.com.
Without my involvement in JavaRanch, I’d never have gotten the opportunity to start
writing in the first place, and so I sincerely thank Paul Wheaton and Kathy Sierra for
starting the whole thing, as well as fellow staffers who gave me encouragement and
support, including (but probably not limited to) Eric Pascarello, Ernest Friedman
Hill, Andrew Monkhouse, Jeanne Boyarsky, Bert Bates, and Max Habibi.

 My partner Jay, and my dogs, Little Bear and Cozmo, get the usual warm thanks for
putting up with the shadowy presence who shared their home and rarely looked up
from his keyboard except to curse Word, or one of the browsers, or anything else that
attracted my ire while I was working on this project.

 And finally, I’d like to thank my coauthor, John Resig, without whom this project
would not exist.
Licensed to Maxeta Technologies <account@maxetatech.com>

about this book
JavaScript is important. That wasn’t always so, but it’s true now.

 Web applications are expected to give users a rich user interface experience, and
without JavaScript, you might as well just be showing pictures of kittens. More than
ever, web developers need to have a sound grasp of the language that brings life to
web applications.

 And like orange juice and breakfast, JavaScript isn’t just for browsers anymore. The
language has knocked down the walls of the browser and is being used on the server
in engines such as Rhino and V8, and in frameworks like Node.js.

 Although this book is primarily focused on JavaScript for web applications, the
fundamentals of the language presented in part 2 of this book are applicable across
the board.

 With more and more developers using JavaScript, it’s now more important
than ever that they grasp its fundamentals, so that they can become true ninjas of
the language.

Audience
This is not your first JavaScript book. If you’re a complete novice to JavaScript, or you
only understand a handful of statements by searching the web for code snippets, this
is not the book for you. Yet.

 This book is aimed at web developers who already have at least a basic grasp of
JavaScript. You should understand the basic structure of JavaScript statements and
how they work to create straightforward on-page scripts. You don’t need to be an
xv

Licensed to Maxeta Technologies <account@maxetatech.com>

ABOUT THIS BOOKxvi
advanced user of the language—that’s what this book is for—but you shouldn’t be a
rank novice.

 You should also have a working knowledge of HTML and CSS. Again, nothing too
advanced, but you should know the basics of putting a web page together.

 If you want some good prerequisite material, grab one of the popular books on
JavaScript and web development, and then tackle this one. We can recommend
JavaScript: The Definitive Guide by David Flanagan, JavaScript: The Good Parts by Douglas
Crockford, and Head First JavaScript by Michael Morrison.

Roadmap
This book is organized to take you from an apprentice to a ninja in four parts.

 Part 1 introduces the topic and some tools we’ll need as we progress through the
rest of the book.

 Part 2 focuses on JavaScript fundamentals: aspects of the language that you take
for granted but aren’t really sure how they work. This may be the most important part
of the book, and even if it’s all you read, you’ll come away with a much sounder under-
standing of JavaScript, the language.

 In part 3, we dive into using the fundamentals that we learned in part 2 to solve
knotty problems that the browsers throw at us.

 Part 4 wraps up the book with a look at advanced topics focusing on lessons
learned from the creation of advanced JavaScript libraries, such as jQuery.

 Let’s take a brief look at what each chapter will cover.
 Chapter 1 introduces us to the challenges that we face as writers of advanced web

applications. It presents some of the problems that the proliferation of browsers cre-
ates, and suggests best current practices that we should follow when developing our
applications, including testing and performance analysis.

 Chapter 2 discusses testing, taking a look at the current state of testing and test
tools. It also introduces a small but powerful testing concept, the assert, which will be
used extensively throughout the remainder of the book to make sure that our code
does what we think it should be doing (or sometimes to prove that it doesn’t!).

 Armed with these tools, chapter 3 begins our foray into the fundamentals of the
language, starting, perhaps to your surprise, with a thorough examination of the func-
tion as defined by JavaScript. Although you might have expected the object to be the
target of first focus, it’s a solid understanding of the function, and JavaScript as a func-
tional language, that begins our transformation from run-of-the-mill JavaScript coders
to JavaScript ninjas!

 Not being done with functions quite yet, chapter 4 takes the fundamentals we
learned in chapter 3 and applies them to problems we face in creating our applica-
tions. We’ll explore recursion—not only for its own sake, but because we can learn a
lot more about functions through scrutinizing it—and we’ll learn how the functional
programming aspects of JavaScript can be applied to not only make our code elegant,
but also more robust and succinct. We’ll learn ways to deal with variable argument
Licensed to Maxeta Technologies <account@maxetatech.com>

ABOUT THIS BOOK xvii
lists, and ways to overload functions in a language that doesn’t natively support the
object-oriented concept of method overloading.

 One of the most important concepts you can take away from this book is the sub-
ject of chapter 5: closures. A key concept in functional programming, closures allow
us to exert fine-grained control over the scope of objects that we declare and create in
our programs. The control of these scopes is the key factor in writing code worthy of a
ninja. Even if you stop reading after this chapter (but we hope that you don’t), you’ll
be a far better JavaScript developer than when you started.

 Objects are finally addressed in chapter 6, where we learn how patterns of objects
can be created through the prototype property of the function, and we’ll learn how
objects are tied to functions for their definitions—one of the many reasons we dis-
cussed functions first.

 Chapter 7 focuses on the regular expression, an often-overlooked feature of
the language that can do the work of scores of lines of code when used correctly.
We’ll learn how to construct and use regular expressions and how to solve some
recurring problems elegantly, using regular expressions and the methods that work
with them.

 Part 2 on language fundamentals closes out with chapter 8, in which we learn how
timers and intervals work in the single-threaded nature of JavaScript. HTML5 promises
to bring us relief from the confines of the single thread with web workers, but most
browsers aren’t quite there yet, and virtually all of the existing JavaScript code
depends upon a good understanding of JavaScript’s single-threaded model.

 Part 3 opens with chapter 9, in which we open the black box of JavaScript’s run-
time code evaluation. We’ll look at various ways to evaluate code on the fly, including
how to do so safely and in the scope of our choosing. Real-world examples, such as
JSON evaluation, metalanguages (a.k.a. domain-specific languages), compression and
obfuscation, and even aspect-oriented programming, are discussed.

 In chapter 10, we examine the controversial with statement, which is used to
shorten references within a scope. Whether you are a fan or detractor of with, it exists
in a lot of code in the wild, and you should understand it regardless of whether you
think it’s the bomb or an abomination.

 Dealing with cross-browser issues is the subject of chapter 11. We examine the five
key development concerns with regard to these issues: browser differences, bugs and
bug fixes, external code and markup, missing features, and regressions. Strategies
such as feature simulation and object detection are discussed at length to help us deal
with these cross-browser challenges.

 Handling element attributes, properties, and styles is the focus of chapter 12.
While the differences in how the various browsers handle these aspects of elements
are slowly converging over time, there still exists a number of knotty problems that
this chapter describes how to solve.

 Part 3 concludes in chapter 13 with a thorough investigation of event handling
in the browsers and ways to create a unified subsystem that handles events in a
Licensed to Maxeta Technologies <account@maxetatech.com>

ABOUT THIS BOOKxviii
browser-agnostic manner. This includes adding features not provided by the browsers,
such as custom events and event delegation.

 In part 4 we pick up the pace and delve deeply into advanced topics taken from the
heart of JavaScript libraries such as jQuery. Chapter 14 discusses how DOM manipula-
tion APIs can be constructed to manipulate the Document Object Model at runtime,
including the Gordian knot of injecting new elements into the DOM.

 Finally, in chapter 15, we discuss how CSS selector engines are constructed and the
different ways in which they parse and evaluate selectors. Not for the faint of heart,
this chapter, but it’s a worthy final test of your ninja-hood.

Code conventions
All source code in listings or in the text is in a fixed-width font like this to sepa-
rate it from ordinary text. Method and function names, properties, XML elements,
and attributes in the text are also presented in this same font.

 In some cases, the original source code has been reformatted to fit on the pages.
In general, the original code was written with page-width limitations in mind, but
sometimes you may find a slight formatting difference between the code in the book
and that provided in the source download. In a few rare cases, where long lines could
not be reformatted without changing their meaning, the book listings contain line-
continuation markers.

 Code annotations accompany many of the listings, highlighting important con-
cepts. In many cases, numbered bullets link to explanations that follow in the text.

Code downloads
Source code for all the working examples in this book (along with some extras that
never made it into the text) is available for download from the book’s web page at
www.manning.com/SecretsoftheJavaScriptNinja.

 The code examples for this book are organized by chapter, with separate folders
for each chapter. The layout is ready to be served by a local web server, such as the
Apache HTTP Server. Simply unzip the downloaded code into a folder of your choice
and make that folder the document root of the application.

 With a few exceptions, most of the examples don’t require the presence of a web
server at all and can be loaded directly into a browser for execution, if you so desire.

 All examples were tested in a variety of modern browsers (as of mid-2012), includ-
ing Internet Explorer 9, Firefox, Safari, and Google Chrome.

Author online
The authors and Manning Publications invite you to the book’s forum, run by Man-
ning Publications, where you can make comments about the book, ask technical ques-
tions, and receive help from the authors and other users. To access and subscribe to
the forum, point your browser to www.manning.com/SecretsoftheJavaScriptNinja and
click the Author Online link. This page provides information on how to get on the
Licensed to Maxeta Technologies <account@maxetatech.com>

www.manning.com/SecretsoftheJavaScriptNinja
www.manning.com/SecretsoftheJavaScriptNinja

ABOUT THIS BOOK xix
forum once you are registered, what kind of help is available, and the rules of conduct
in the forum.

 Manning’s commitment to our readers is to provide a venue where a meaningful
dialogue between individual readers and between readers and the authors can take
place. It’s not a commitment to any specific amount of participation on the part of the
authors, whose contribution to the book’s forum remains voluntary (and unpaid). We
suggest you try asking the authors some challenging questions, lest their interest stray!

 The Author Online forum and the archives of previous discussions will be accessi-
ble from the publisher’s website as long as the book is in print.

About the cover illustration
The figure on the cover of Secrets of the JavaScript Ninja is captioned “Noh Actor,
Samurai,” from a woodblock print by an unknown Japanese artist of the mid-nineteenth
century. Derived from the Japanese word for talent or skill, Noh is a form of classical
Japanese musical drama that has been performed since the 14th century. Many char-
acters are masked, with men playing male and female roles. The samurai, a hero fig-
ure in Japan for hundreds of years, was often featured in the performances, and in
this print the artist renders with great skill the beauty of the costume and the ferocity
of the samurai.

 Samurai and ninjas were both warriors excelling in the Japanese art of war, known
for their bravery and cunning. Samurai were elite soldiers, well-educated men who
knew how to read and write as well as fight, and they were bound by a strict code of
honor called Bushido (The Way of the Warrior), which was passed down orally from
generation to generation, starting in the 10th century. Recruited from the aristocracy
and upper classes, analagous to European knights, samurai went into battle in large
formations, wearing elaborate armor and colorful dress meant to impress and intimi-
date. Ninjas were chosen for their martial arts skills rather than their social standing
or education. Dressed in black and with their faces covered, they were sent on mis-
sions alone or in small groups to attack the enemy with subterfuge and stealth, using
any tactics to assure success; their only code was one of secrecy.

 The cover illustration is from a set of three Japanes prints owned for many years by
a Manning editor, and when we were looking for a ninja for the cover of this book, the
striking samurai print came to our attention and was selected for its intricate details,
vibrant colors, and vivid depiction of a ferocious warrior ready to strike—and win.

 At a time when it is hard to tell one computer book from another, Manning cele-
brates the inventiveness and initiative of the computer business with book covers
based on two-hundred-year-old illustrations that depict the rich diversity of traditional
costumes from around the world, brought back to life by prints such as this one.
Licensed to Maxeta Technologies <account@maxetatech.com>

www.manning.com/SecretsoftheJavaScriptNinja

about the authors
John Resig is the Dean of Computer Science at Khan
Academy and the creator of the jQuery JavaScript
library. jQuery is currently used in 58% of the top
10,000 websites (according to BuiltWith.com) and is
used on tens of millions of other sites, making it one
of the most popular technologies used to build web-
sites and possibly one of the most popular program-
ming technologies of all time.

 He’s also created a number of other open source
utilities and projects, including Processing.js (a port
of the Processing language to JavaScript), QUnit (a
test suite for testing JavaScript code), and TestSwarm

(a platform for distributed JavaScript testing).
 He is currently working to take Computer Science education a step further at

Khan Academy, where he’s developing Computer Science curriculum and tools to
teach people of all ages how to program. Khan Academy’s goal is to create excellent
educational resources that are freely available for all to learn from. He’s working to
not just teach people how to program, but to replicate the initial spark of excitement
that every programmer has felt after writing their first program.

 Currently, John is located in Brooklyn, NY, and enjoys studying Ukiyo-e (Japanese
woodblock printing) in his spare time.
xx

Licensed to Maxeta Technologies <account@maxetatech.com>

ABOUT THE AUTHORS xxi
Bear Bibeault has been writing software for over
three decades, starting with a Tic-Tac-Toe program
written on a Control Data Cyber supercomputer via
a 100-baud teletype. Because he has two degrees in
Electrical Engineering, Bear should be designing
antennas or something; but since his first job with
Digital Equipment Corporation, he has always been
much more fascinated with programming.

 Bear has also served stints with companies such
as Lightbridge Inc., BMC Software, Dragon Systems,
Works.com, and a handful of other companies. Bear

even served in the U.S. Military, teaching infantry soldiers how to blow up tanks—
skills that come in handy during those daily scrum meetings.

 Bear is currently a Software Architect for a leading provider of household gateway
devices and television set-top boxes.

 Bear is the author of a number of other Manning books: jQuery in Action (first and
second editions), Ajax in Practice, and Prototype and Scriptaculous in Action, and he has
been a technical reviewer for many of the web-focused “Head First” books by O’Reilly
Publishing, such as Head First Ajax, Head Rush Ajax, and Head First Servlets and JSP.

 In addition to his day job, Bear also writes books (duh!), runs a small business that
creates web applications and offers other media services (but not wedding videogra-
phy—never, ever wedding videography), and helps to moderate CodeRanch.com as a
“marshal” (very senior moderator).

 When not planted in front of a computer, Bear likes to cook big food (which
accounts for his jeans size), dabble in photography and video, ride his Yamaha V-Star,
and wear tropical print shirts.

 He works and resides in Austin, Texas, a city he dearly loves except for the com-
pletely insane drivers.
Licensed to Maxeta Technologies <account@maxetatech.com>

www.CodeRanch.com

Licensed to Maxeta Technologies <account@maxetatech.com>

Part 1

Preparing for training

This part of the book will set the stage for your JavaScript ninja training.
 In chapter 1, you’ll learn what we’re trying to accomplish with this book, and

we’ll lay the framework for the environment in which JavaScript authors operate.
 Chapter 2 will teach you why testing is so important and give you a brief sur-

vey of some of the testing tools available. Then we’ll develop some surprisingly
simple testing tools that you’ll use throughout the rest of your training.

 When you’re finished with this part of the book, you’ll be ready to embark on
your training as a JavaScript ninja!

Licensed to Maxeta Technologies <account@maxetatech.com>

Licensed to Maxeta Technologies <account@maxetatech.com>

Enter the ninja
If you’re reading this book, you know that there’s nothing simple about creating
effective and cross-browser JavaScript code. In addition to the normal challenges of
writing clean code, we have the added complexity of dealing with obtuse browser
differences and complexities. To deal with these challenges, JavaScript developers
frequently capture sets of common and reusable functionality in the form of
JavaScript libraries.

 These libraries vary widely in approach, content, and complexity, but one con-
stant remains: they need to be easy to use, incur the least amount of overhead, and
be able to work across all browsers that we wish to target.

 It stands to reason, then, that understanding how the very best JavaScript
libraries are constructed can provide us with great insight into how our own code

This chapter covers
■ A look at the purpose and structure

of this book
■ Which libraries we’ll look at
■ What is “advanced” JavaScript programming?
■ Cross-browser authoring
■ Test suite examples
3

Licensed to Maxeta Technologies <account@maxetatech.com>

4 CHAPTER 1 Enter the ninja
can be constructed to achieve these same goals. This book sets out to uncover the
techniques and secrets used by these world-class code bases and to gather them into a
single resource.

 In this book we’ll be examining the techniques that were (and continue to be)
used to create the popular JavaScript libraries. Let’s meet those libraries!

1.1 The JavaScript libraries we’ll be tapping
The techniques and practices used to create modern JavaScript libraries will be the
focus of our attention in this book. The primary library that we’ll be considering is, of
course, jQuery, which has risen in prominence to be the most ubiquitous JavaScript
library in modern use.

 jQuery (http://jquery.com) was created by John Resig and released in January of
2006. jQuery popularized the use of CSS selectors to match DOM content. Among its
many capabilities, it provides DOM manipulation, Ajax, event handling, and anima-
tion functionality.

 This library has come to dominate the JavaScript library market, being used on
hundreds of thousands of websites, and interacted with by millions of users. Through
considerable use and feedback, this library has been refined over the years—and con-
tinues to evolve—into the optimal code base that it is today.

 In addition to examining example code from jQuery, we’ll also look at techniques
utilized by the following libraries:

■ Prototype (http://prototypejs.org/)—The godfather of the modern JavaScript
libraries, created by Sam Stephenson and released in 2005. This library embod-
ies DOM, Ajax, and event functionality, in addition to object-oriented, aspect-
oriented, and functional programming techniques.

■ Yahoo! UI (http://developer.yahoo.com/yui)—The result of internal JavaScript
framework development at Yahoo! and released to the public in February of
2006. Yahoo! UI (YUI) includes DOM, Ajax, event, and animation capabilities in
addition to a number of preconstructed widgets (calendar, grid, accordion,
and others).

■ base2 (http://code.google.com/p/base2)—Created by Dean Edwards and
released in March 2007. This library supports DOM and event functionality. Its
claim to fame is that it attempts to implement the various W3C specifications in
a universal, cross-browser manner.

All of these libraries are well constructed and tackle their target problem areas com-
prehensively. For these reasons, they’ll serve as a good basis for further analysis, and
understanding the fundamental construction of these code bases will give us insight
into the process of world-class JavaScript library construction.

 But these techniques aren’t only useful for constructing large libraries; they can be
applied to all JavaScript coding, regardless of size.

 The makeup of a JavaScript library can be broken down into three aspects:
Licensed to Maxeta Technologies <account@maxetatech.com>

http://jquery.com
http://prototypejs.org/
http://developer.yahoo.com/yui
http://code.google.com/p/base2

5Understanding the JavaScript language
■ Advanced use of the JavaScript language
■ Meticulous construction of cross-browser code
■ The use of current best practices that tie everything together

We’ll be carefully analyzing these three aspects in each of the libraries to gather a
complete knowledge base we can use to create our own effective JavaScript code.

1.2 Understanding the JavaScript language
Many JavaScript coders, as they advance through their careers, may get to the point
where they’re actively using the vast array of elements comprising the language,
including objects and functions and (if they’ve been paying attention to coding
trends) even anonymous inline functions. In many cases, however, those skills may not
be taken beyond fundamental levels. Additionally, there’s generally a very poor under-
standing of the purpose and implementation of closures in JavaScript, which funda-
mentally and irrevocably exemplify the importance
of functions to the language.

 JavaScript consists of a close relationship
between objects, functions, and closures (see fig-
ure 1.1). Understanding the strong relationship
between these three concepts can vastly improve
our JavaScript programming ability, giving us a
strong foundation for any type of application
development.

 Many JavaScript developers, especially those com-
ing from an object-oriented background, may pay a
lot of attention to objects, but at the expense of understanding how functions and clo-
sures contribute to the big picture.

 In addition to these fundamental concepts, there are two features in JavaScript
that are woefully underused: timers and regular expressions. These two concepts have
applications in virtually any JavaScript code base, but they aren’t always used to their
full potential due to their misunderstood nature.

 A firm grasp of how timers operate within the browser, all too frequently a mystery,
gives us the ability to tackle complex coding tasks such as long-running computations
and smooth animations. And a sound understanding of how regular expressions work
allows us to simplify what would otherwise be quite complicated pieces of code.

 As another high point of our advanced tour of the JavaScript language, we’ll take a
look at the with statement in chapter 10, and the divisive eval() method in chapter 9—
two important, but controversial, language features that have been trivialized, mis-
used, and even condemned outright by many JavaScript programmers.

NOTE Those of you who have been keeping track of what’s moving and shak-
ing in the web development world will know that both of these topics are con-
troversial and are either deprecated or limited in future versions of JavaScript.

OBJECTS

FUNCTIONS

CLOSURES

Figure 1.1 JavaScript consists of a
close relationship between objects,
functions, and closures.
Licensed to Maxeta Technologies <account@maxetatech.com>

6 CHAPTER 1 Enter the ninja
But as you’ll likely come across these concepts in existing code, it’s important to
understand them, even if you have no plans to use them in future code.

By looking at the work of some of the best JavaScript coders, we’ll see that, when used
appropriately, advanced language features allow for the creation of some fantastic
pieces of code that wouldn’t be otherwise possible. To a large degree, these advanced
features can also be used for some interesting metaprogramming exercises, molding
JavaScript into whatever we want it to be.

 Learning how to use advanced language features responsibly and to their best
advantage can certainly elevate our code to higher levels, and honing our skills to tie
these concepts and features together will give us a level of understanding that puts the
creation of any type of JavaScript application within our reach. This foundation will
give us a solid base for moving forward, starting with writing solid, cross-browser code.

1.3 Cross-browser considerations
Perfecting our JavaScript programming skills will take us far, especially now that
JavaScript has escaped the confines of the browser and is being used on the server
with JavaScript engines like Rhino and V8 and libraries like Node.js. But when devel-
oping browser-based JavaScript applications (which is the focus of this book), sooner
rather than later, we’re going to run face first into The Browsers and their maddening
issues and inconsistencies.

 In a perfect world, all browsers would be bug-free and would support web standards
in a consistent fashion, but we all know that we most certainly don’t live in that world.

 The quality of browsers has improved greatly as of late, but they all still have some
bugs, missing APIs, and browser-specific quirks that we’ll need to deal with. Develop-
ing a comprehensive strategy for tackling these browser issues, and becoming inti-
mately familiar with their differences and quirks, is just as important, if not more so,
than proficiency in JavaScript itself.

 When writing browser applications or JavaScript libraries to be used in them, pick-
ing and choosing which browsers to support is an important consideration. We’d
probably like to support them all, but limitations on development and testing resources
dictate otherwise. So how do we decide which to support, and to what level?

 An approach that we can employ is one loosely borrowed from an older Yahoo!
approach that was called graded browser support. In this technique, we create a browser
support matrix that serves as a snapshot of how important a browser and its platform
are to our needs.

 In such a table, we list the target platforms on one axis, and the browsers on the
other. Then, in the table cells, we give a “grade” (A through F, or any other grading
system that meets our needs) to each browser/platform combination. Table 1.1 shows
a hypothetical example of such a table.

 Note that we haven’t filled in any grades. What grades you assign to a particular
combination of platform and browser is entirely dependent upon the needs and
requirements of your project, as well as other important factors, like the makeup of
Licensed to Maxeta Technologies <account@maxetatech.com>

7Cross-browser considerations
the target audience. We can use this approach to come up with grades that measure
how important support for the platform/browser is, and combine that info with the
cost of that support to try to come up with the optimal set of supported browsers.
We’ll be exploring this in more depth in chapter 11.

 As it’s impractical to develop against a large number of platform/browser combi-
nations, we must weigh the costs versus the benefits of supporting the various brows-
ers. Any such analysis must take into account multiple considerations, the primary of
which are

■ The expectations and needs of the target audience
■ The market share of the browser
■ The amount of effort necessary to support the browser

The first point is a subjective one that only your project can determine. Market share,
on the other hand, can frequently be measured using available information. And a
rough estimate of the effort involved in supporting each browser can be determined by
considering the capabilities of the browsers and their adherence to modern standards.

 Figure 1.2 shows a sample chart that represents information on browser usage
(obtained from StatCounter for August 2012) and our personal opinions on the cost
of development for the top desktop browsers.

 Charting the benefit versus cost in this manner shows at a glance where we can put
our effort to get the most “bang for the buck.” Here are a few things that jump out of
this chart:

■ Even though it’s relatively a lot more effort to support Internet Explorer 7 and
8 than the standards-compliant browsers, they still have a large market share,
which makes the extra effort worthwhile if those users are an important target
for our application audience.

■ IE 9, having made great strides towards standards compliance, is easier to sup-
port than previous versions of IE, and it’s already making headway into mar-
ket share.

Table 1.1 A hypothetical “browser support matrix”

Windows OS X Linux iOS Android

IE 6 N/A N/A N/A N/A

IE 7, 8 N/A N/A N/A N/A

IE 9 N/A N/A N/A N/A

Firefox N/A

Chrome

Safari N/A N/A

Opera
Licensed to Maxeta Technologies <account@maxetatech.com>

8 CHAPTER 1 Enter the ninja
■ Supporting Firefox and Chrome is a no-brainer, because they have a large mar-
ket share and are easy to support.

■ Even though Safari has a relatively low market share, it still deserves support, as its
standards-compliant nature makes its cost small. (As a rule of thumb, if it works in
Chrome, it’ll likely work in Safari—pathological cases notwithstanding.)

■ Opera, though it requires no more effort than Safari, can lose out on the desk-
top because of its minuscule market share. But if the mobile platforms are
important to you, mobile Opera is a bigger player; see figure 1.3.

■ Nothing really need be said about IE 6. (See www.ie6countdown.com.)

Things change pretty drastically when we take a look at the mobile landscape, as
shown in figure 1.3.

 Of course, nothing is ever quite so cut-and-dried. It might be safe to say that bene-
fit is more important than cost, but it ultimately comes down to the choices of those in
the decision-making process, taking into account factors such as the needs of the mar-
ket and other business concerns. But quantifying the costs versus benefits is a good
starting point for making these important support decisions.

 Also, be aware that the landscape changes rapidly. Keeping tabs on sites such as
http://gs.statcounter.com is a wise precaution.

 Another possible factor for resource-constrained organizations is the skill of the
development team. While the primary reason for building an app is its use by end
users, developers may have to build the skills necessary to develop the application to
meet the end users’ needs. Such considerations need to be taken into account during
the cost analysis phase.

IE 6 IE 7,8 Firefox Safari Chrome Opera

Cost (development and testing)

IE 9

Figure 1.2 Analyzing the cost versus the benefit of supporting various desktop
browsers indicates where we should put our effort.
Licensed to Maxeta Technologies <account@maxetatech.com>

www.ie6countdown.com
http://gs.statcounter.com is a wise precaution

9Current best practices
The cost of cross-browser development can depend significantly on the skill and expe-
rience of the developers, and this book is intended to boost that skill level, so let’s get
to it by looking at current best practices.

1.4 Current best practices
Mastery of the JavaScript language and a grasp of cross-browser coding issues are
important parts of becoming an expert web application developer, but they’re not the
complete picture. To enter the big leagues, you also need to exhibit the traits that
scores of previous developers have proved are beneficial to the development of quality
code. These traits, which we’ll examine in depth in chapter 2, are known as best prac-
tices and, in addition to mastery of the language, include such elements as

■ Testing
■ Performance analysis
■ Debugging skills

It’s vitally important to adhere to these practices in our coding, and frequently; the
complexity of cross-browser development certainly justifies it. Let’s examine a couple
of these practices.

1.4.1 Current best practice: testing

Throughout this book, we’ll be applying a number of testing techniques that serve to
ensure that our example code operates as intended, as well as to serve as examples of

Opera Android Safari Nokia Blackberry

Cost (development and testing)

Figure 1.3 The mobile landscape, where development costs are fairly even, comes
down to usage statistics.
Licensed to Maxeta Technologies <account@maxetatech.com>

10 CHAPTER 1 Enter the ninja
how to test general code. The primary tool that we’ll be using for testing is an assert()
function, whose purpose is to assert that a premise is either true or false.

 The general form of this function is

assert(condition, message);

where the first parameter is a condition that should be true, and the second is a mes-
sage that will be displayed if it’s not.

 Consider this, for example:

assert(a == 1, "Disaster! a is not 1!");

If the value of variable a isn’t equal to 1, the assertion fails, and the somewhat overly
dramatic message is displayed.

 Note that the assert() function isn’t an innate feature of the language (some lan-
guages, such as Java, provide such capabilities), so we’ll be implementing it ourselves.
We’ll be discussing its implementation and use in chapter 2.

1.4.2 Current best practice: performance analysis

Another important practice is performance analysis. The JavaScript engines in the
browsers have been making astounding strides in the performance of JavaScript itself,
but that’s no excuse for us to write sloppy and inefficient code.

 We’ll be using code such as the following later in this book for collecting perfor-
mance information:

start = new Date().getTime();
for (var n = 0; n < maxCount; n++) {
 /* perform the operation to be measured *//
}
elapsed = new Date().getTime() - start;
assert(true,"Measured time: " + elapsed);

Here, we bracket the execution of the code to be measured with the collection of
timestamps: one before we execute the code and one after. Their difference tells us
how long the code took to perform, which we can compare against alternatives to the
code that we measure using the same technique.

 Note how we perform the code multiple times; in this example, we perform it the
number of times represented by maxCount. Because a single operation of the code hap-
pens much too quickly to measure reliably, we need to perform the code many times
to get a measurable value. Frequently, this count can be in the tens of thousands, or
even millions, depending upon the nature of the code being measured. A little trial-
and-error lets us choose a reasonable value.

 These best-practice techniques, along with others that we’ll learn along the way,
will greatly enhance our JavaScript development. Developing applications with the
restricted resources that a browser provides, coupled with the increasingly complex
world of browser capability and compatibility, makes having a robust and complete set
of skills a necessity.
Licensed to Maxeta Technologies <account@maxetatech.com>

11Summary
1.5 Summary
Here’s a rundown of what we’ve learned in this chapter:

■ Cross-browser web application development is hard, harder than most people
would think.

■ In order to pull it off, we need not only a mastery of the JavaScript language,
but a thorough knowledge of the browsers, along with their quirks and inconsis-
tencies, and a good grounding in standard current best practices.

■ While JavaScript development can certainly be challenging, there are those
brave souls who have already gone down this tortuous route: the developers of
JavaScript libraries. We’ll be distilling the knowledge demonstrated in the con-
struction of these code bases, effectively fueling our development skills and
raising them to world-class level.

This exploration will certainly be informative and educational—let’s enjoy the ride!
Licensed to Maxeta Technologies <account@maxetatech.com>

Licensed to Maxeta Technologies <account@maxetatech.com>

Arming with testing
and debugging
Constructing effective test suites for your code is always important, so we’re going
to discuss it now, before we go into any discussions on coding. As important as a
solid testing strategy is for all code, it can be crucial for situations where external
factors have the potential to affect the operation of your code, which is exactly the
case we’re faced with in cross-browser JavaScript development.

 Not only do we have the typical problems of ensuring the quality of the code,
especially when dealing with multiple developers working on a single code base,
and guarding against regressions that could break portions of an API (generic
problems that all programmers need to deal with), but we also have the problem of
determining if our code works in all the browsers that we choose to support.

 We’ll further discuss the problem of cross-browser development in depth when
we look at cross-browser strategies in chapter 11, but for now, it’s vital that the
importance of testing be emphasized and testing strategies defined, because we’ll
be using these strategies throughout the rest of the book.

This chapter covers
■ Tools for debugging JavaScript code
■ Techniques for generating tests
■ Building a test suite
■ How to test asynchronous operations
13

Licensed to Maxeta Technologies <account@maxetatech.com>

14 CHAPTER 2 Arming with testing and debugging
 In this chapter, we’re going to look at some tools and techniques for debugging
JavaScript code, for generating tests based upon those results, and for constructing a
test suite to reliably run those tests.

 Let’s get started.

2.1 Debugging code
Remember when debugging JavaScript meant using alert() to verify the value of vari-
ables? Well, the ability to debug JavaScript code has dramatically improved in the last
few years, in no small part due to the popularity of the Firebug developer extension
for Firefox.

 Similar tools have been developed for all major browsers:

■ Firebug—The popular developer extension for Firefox that got the ball rolling.
See http://getfirebug.org/.

■ IE Developer Tools—Included in Internet Explorer 8 and later.
■ Opera Dragonfly—Included in Opera 9.5 and newer. Also works with mobile

versions of Opera.
■ WebKit Developer Tools—Introduced in Safari 3, dramatically improved as of

Safari 4, and now available in Chrome.

There are two important approaches to debugging JavaScript: logging and break-
points. They’re both useful for answering the important question, “What’s going on in
my code?” but each tackles it from a different angle.

 Let’s start by looking at logging.

2.1.1 Logging

Logging statements (such as using the console.log() method in Firebug, Safari,
Chrome, IE, and recent versions of Opera) are part of the code (even if perhaps
temporarily) and are useful in a cross-browser sense. We can write logging calls in
our code, and we can benefit from seeing the messages in the consoles of all mod-
ern browsers.

 These browser consoles have dramatically improved the logging process over the
old “add an alert” technique. All our logging statements can be written to the console
and be browsed immediately or at a later time without impeding the normal flow of
the program—something not possible with alert().

 For example, if we wanted to know what the value of a variable named x was at a
certain point in the code, we might write this:

var x = 213;
console.log(x);

The result of executing this statement in the Chrome browser with the JavaScript con-
sole enabled would be what you see in figure 2.1.

 Older versions of Opera chose to go their own way when it came to logging,
implementing a proprietary postError() method. If logging in those older versions is
Licensed to Maxeta Technologies <account@maxetatech.com>

http://getfirebug.org/

15Debugging code
necessary, we can get all suave and implement a higher-level logging method that
works across all browsers, as shown in the following listing.

NOTE If you aren’t dealing with outdated versions of Opera, you can forgo
all this and just use console.log().

function log() {
 try {
 console.log.apply(console, arguments);
 }
 catch(e) {
 try {
 opera.postError.apply(opera, arguments);
 }
 catch(e){
 alert(Array.prototype.join.call(arguments, " "));
 }
 }
}

TIP If you’re curious, a more comprehensive version of listing 2.1 is available
at http://patik.com/blog/complete-cross-browser-console-log/.

In listing 2.1, we first try to log a message using the method that works in most mod-
ern browsers B. If that fails, an exception will be thrown that we catch c, and then
we can try to log a message using Opera’s proprietary method d. If both of those
methods fail, we fall back to using old-fashioned alerts e.

NOTE Listing 2.1 uses the apply() and call() methods of the JavaScript Func-
tion() constructor to relay the arguments passed to our function to the log-
ging function. These Function() methods are designed to help us make
precisely controlled calls to JavaScript functions, and we’ll be seeing much
more of them in chapter 3.

Listing 2.1 A simple logging method that works in all modern browsers

Figure 2.1 Logging lets us see the state of things in our code as it’s running.

Tries to log message using the
most common method b

Catches any failure
in logging

 c

Tries to log the
Opera way d

Uses alert if
all else fails

 e
Licensed to Maxeta Technologies <account@maxetatech.com>

http://patik.com/blog/complete-cross-browser-console-log/

16 CHAPTER 2 Arming with testing and debugging
Logging is all well and good for seeing what the state of things might be while the
code is running, but sometimes we’ll want to stop the action and take a look around.

 That’s where breakpoints come in.

2.1.2 Breakpoints

Breakpoints are a somewhat more complex concept than logging, but they possess a
notable advantage over logging: they halt the execution of a script at a specific line of
code, pausing the browser. This allows us to leisurely investigate the state of all sorts
of things at the point of the break. This includes all accessible variables, the context,
and the scope chain.

 Let’s say that we have a page that employs our new log() method, as shown in the
next listing.

<!DOCTYPE html>
<html>
 <head>
 <title>Listing 2.2</title>
 <script type="text/javascript" src="log.js"></script>
 <script type="text/javascript">
 var x = 213;
 log(x);
 </script>
 </head>
 <body>
 </body>
</html>

If we were to set a breakpoint using Firebug on the annotated line B in listing 2.2 (by
clicking on the line number margin in the Script display) and refresh the page to
cause the code to execute, the debugger would stop execution at that line and show
us the display in figure 2.2.

 Note how the rightmost pane allows us to see the state within which our code
is running, including the value of x. The debugger breaks on a line before the

Listing 2.2 A simple page that uses the custom log() method

Line where
we’ll break b

Figure 2.2 Breakpoints allow us to halt execution at a specific line of code so we can take a gander at
the state.
Licensed to Maxeta Technologies <account@maxetatech.com>

17Test generation
breakpointed line is actually executed; in this example, the call to the log() method
has yet to be executed.

 If we were trying to debug a problem with our new method, we might want to step
into that method to see what’s going on inside it. Clicking on the “step into” button
(the left-most gold arrow button) causes the debugger to execute up to the first line
of our method, and we’d see the display shown in figure 2.3. Note how the displayed
state has changed to allow us to poke around the new state in which the log()
method executes.

 Any full-featured debugger with breakpoint capabilities is highly dependent upon
the browser environment in which it’s executing. For this reason, the aforemen-
tioned developer tools were created; otherwise, their functionality wouldn’t be possi-
ble. It’s a great boon and relief to the entire web development community that all the
major browser implementers have come on board to create effective utilities for allow-
ing debugging.

 Debugging code not only serves its primary and obvious purpose (detecting and
fixing bugs), but it also can help us achieve the current best-practice goal of generat-
ing effective test cases.

2.2 Test generation
Robert Frost wrote that good fences make good neighbors, but in the world of
web applications, and indeed any programming discipline, good tests make good
code. Note the emphasis on the word good. It’s quite possible to have an extensive
test suite that doesn’t really help the quality of our code one iota if the tests are
poorly constructed.

 Good tests exhibit three important characteristics:

■ Repeatability—Our test results should be highly reproducible. Tests run repeat-
edly should always produce the exact same results. If test results are nondeter-
ministic, how would we know which results are valid and which are invalid?
Additionally, reproducibility ensures that our tests aren’t dependent upon exter-
nal factors issues like network or CPU loads.

Figure 2.3 Stepping into a method lets us see the new state in which it executes.
Licensed to Maxeta Technologies <account@maxetatech.com>

18 CHAPTER 2 Arming with testing and debugging
■ Simplicity—Our tests should focus on testing one thing. We should strive to
remove as much HTML markup, CSS, or JavaScript as we can without dis-
rupting the intent of the test case. The more we remove, the greater the
likelihood that the test case will only be influenced by the specific code that
we’re testing.

■ Independence—Our tests should execute in isolation. We must avoid making
the results from one test dependent upon another. Breaking tests down into the
smallest possible units will help us determine the exact source of a bug when
an error occurs.

There are a number of approaches that can be used for constructing tests, with the
two primary approaches being deconstructive tests and constructive tests:

■ Deconstructive test cases—Deconstructive test cases are created when existing
code is whittled down (deconstructed) to isolate a problem, eliminating any-
thing that’s not germane to the issue. This helps us to achieve the three charac-
teristics listed previously. We might start with a complete website, but after
removing extra markup, CSS, and JavaScript, we’ll arrive at a smaller case that
reproduces the problem.

■ Constructive test cases—With a constructive test case we start from a known good,
reduced case and build up until we’re able to reproduce the bug in question. In
order to use this style of testing, we’ll need a couple of simple test files from
which to build up tests, and a way to generate these new tests with a clean copy
of our code.

Let’s look at an example of constructive testing.
 When creating reduced test cases, we can start with a few HTML files with mini-

mum functionality already included in them. We might even have different starting
files for various functional areas; for example, one for DOM manipulation, one for
Ajax tests, one for animations, and so on.

 For example, the following listing shows a simple DOM test case used to test jQuery.

<script src="dist/jquery.js"></script>
<script>
 $(document).ready(function() {
 $("#test").append("test");
 });
</script>
<style>
 #test { width: 100px; height: 100px; background: red; }
</style>
<div id="test"></div>

To generate a test, with a clean copy of the code base, we can use a little shell
script to check out the library, copy over the test case, and build the test suite, as
shown here:

Listing 2.3 A reduced DOM test case for jQuery
Licensed to Maxeta Technologies <account@maxetatech.com>

19Testing frameworks
#!/bin/sh
Check out a fresh copy of jQuery
git clone git://github.com/jquery/jquery.git $1
Copy the dummy test case file in
cp $2.html $1/index.html
Build a copy of the jQuery test suite
cd $1 && make

Saved in a file named gen.sh, the preceding script would be executed using this com-
mand line,

./gen.sh mytest dom

which would pull in the DOM test case from dom.html in the Git repository.
 Another alternative is to use a prebuilt service designed for creating simple test

cases. One of these services is JS Bin (http://jsbin.com/), a simple tool for building a
test case that then becomes available at a unique URL—you can even include copies
of some of the most popular JavaScript libraries. An example of JS Bin is shown in fig-
ure 2.4.

Once we have the tools and knowledge needed to create test cases, we can build test
suites around cases so that it becomes easier to run these tests over and over again.
Let’s look into that.

2.3 Testing frameworks
A test suite should serve as a fundamental part of your development workflow, so you
should pick a suite that works particularly well for your coding style and your code
base. A JavaScript test suite should serve a single need: displaying the results of the
tests, making it easy to determine which tests have passed or failed. Testing frame-
works can help us reach that goal without having to worry about anything other than
creating the tests and organizing them into suites.

Figure 2.4 A screenshot of the JS Bin website in action
Licensed to Maxeta Technologies <account@maxetatech.com>

http://jsbin.com/

20 CHAPTER 2 Arming with testing and debugging
There are a number of features that we might want to look for in a JavaScript unit-
testing framework, depending upon the needs of the tests. Some of these features
include the following:

■ The ability to simulate browser behavior (clicks, keypresses, and so on)
■ Interactive control of tests (pausing and resuming tests)
■ Handling asynchronous test timeouts
■ The ability to filter which tests are to be executed

An informal survey attempting to determine which JavaScript testing frameworks peo-
ple used in their day-to-day development yielded results that were quite illuminating.
Figure 2.5 depicts the disheartening fact that a lot of the respondents don’t test at all.
In the wild, it’s easy to believe that the percentage of non-testers is actually higher.

NOTE The raw results, should you be interested, can be found at http://
spreadsheets.google.com/pub?key=ry8NZN4-Ktao1Rcwae-9Ljw&output=html.

Another insight from the results is that the vast majority of script authors who do write
tests use one of four tools, all of which were pretty much tied in the results: JsUnit,
QUnit, Selenium, and YUI Test. The top ten “winners” are shown in figure 2.6.

 This is an interesting result, showing that there isn’t any one definitive preferred
testing framework at this point. But even more interesting is the number of one-off
frameworks that have relatively few users, as can be seen in figure 2.6.

Almost half of
JavaScript devs

don't test!

QUnit

FireUnit
Prototype

JsUnit
Screw.Unit
Envjs

Selenium
JSSpec
Other

YUI Test

Dojo

None

48%

10%

10%

9%

7%

3%

3%

Figure 2.5 A dishearteningly large percentage of JavaScript developers don’t
test at all!
Licensed to Maxeta Technologies <account@maxetatech.com>

http://spreadsheets.google.com/pub?key=ry8NZN4-Ktao1Rcwae-9Ljw&output=html
http://spreadsheets.google.com/pub?key=ry8NZN4-Ktao1Rcwae-9Ljw&output=html

21Testing frameworks
It should be noted that it’s fairly easy for someone to write a testing framework from
scratch, and that’s not a bad way to gain a greater understanding of what a testing
framework is trying to achieve. This is an especially interesting exercise to tackle
because, when writing a testing framework, we’d typically be dealing with pure
JavaScript without having to worry much about cross-browser issues. Unless, that is,
you’re trying to simulate browser events, and if you are, good luck! (Although that is
something we’ll be tackling in chapter 13.)

 According to the results depicted in figure 2.6, a number of people have come to
this same conclusion and have written a large number of one-off frameworks to suit
their own particular needs. But while it’s possible to write a proprietary unit-testing
framework, it’s likely that you’ll want to use something that’s been prebuilt.

 General JavaScript unit-testing frameworks tend to provide a few basic compo-
nents: a test runner, test groupings, and assertions. Some also provide the ability to
run tests asynchronously. Let’s take a brief look at some of the most popular unit-
testing frameworks.

2.3.1 QUnit

QUnit is the unit-testing framework that was originally built to test jQuery. It has since
expanded beyond its initial goals and is now a standalone unit-testing framework.
QUnit is primarily designed to be a simple solution to unit testing, providing a mini-
mal, but easy to use, API.

QUnit

JsUnit

Selenium

YUI Test

FireUnit

Screw.Unit

JsSpec

Dojo
Prototype Envjs

Figure 2.6 Most test-savvy
developers favor a small handful
of testing tools.
Licensed to Maxeta Technologies <account@maxetatech.com>

22 CHAPTER 2 Arming with testing and debugging
 QUnit’s distinguishing features are as follows:

■ Simple API
■ Supports asynchronous testing
■ Not limited to jQuery or jQuery-using code
■ Especially well-suited for regression testing

More information can be found at http://qunitjs.com.

2.3.2 YUI Test
YUI Test is a testing framework built and developed by Yahoo! and released in October
of 2008. It was completely rewritten in 2009 to coincide with the release of YUI 3. YUI
Test provides an impressive number of features and functionality that’s sure to cover
any unit-testing case required by your code base.

 YUI Test’s distinguishing features are as follows:

■ Extensive and comprehensive unit-testing functionality
■ Supports asynchronous tests
■ Good event simulation

More information is available at http://developer.yahoo.com/yui/3/test/.

2.3.3 JsUnit
JsUnit is a port of the popular Java JUnit testing framework to JavaScript. While it’s still
one of the most popular JavaScript unit-testing frameworks around, JsUnit is also one
of the oldest (both in terms of the code base age and quality). The framework hasn’t
been updated much recently, so for something that’s known to work with all modern
browsers, JsUnit may not be the best choice.

 More information can be found at www.jsunit.net/.

2.3.4 Newer unit-testing frameworks
According to information on the JUnit main page, the Pivotal Labs team is now
focused on a new testing tool named Jasmine. More information is available at http://
pivotallabs.com/what/mobile/overview.

 Another testing tool to be aware of is TestSwarm, a distributed, continuous-
integration testing tool, originally developed by John Resig and now part of Mozilla
Labs: https://github.com/jquery/testswarm/wiki.

 Next, we’ll take a look at creating test suites.

2.4 The fundamentals of a test suite
The primary purpose of a test suite is to aggregate all the individual tests that your
code base might have into a single unit, so that they can be run in bulk, providing a
single resource that can be run easily and repeatedly.

 To better understand how a test suite works, it makes sense to look at how a test
suite is constructed. Perhaps surprisingly, JavaScript test suites are really easy to con-
struct. A functional one can be built in only about 40 lines of code.
Licensed to Maxeta Technologies <account@maxetatech.com>

www.jsunit.net/
http://qunitjs.com
http://developer.yahoo.com/yui/3/test/
http://pivotallabs.com/what/mobile/overview
http://pivotallabs.com/what/mobile/overview
https://github.com/jquery/testswarm/wiki

23The fundamentals of a test suite
 One would have to ask, though, “Why would I want to build a new test suite?” For
most cases, it probably isn’t necessary to write your own JavaScript test suite. There are
already a number of good-quality suites to choose from (as already shown). But build-
ing your own test suite can serve as a good learning experience, especially when look-
ing at how asynchronous testing works.

2.4.1 The assertion

The core of a unit-testing framework is its assertion method, usually named assert().
This method usually takes a value—an expression whose premise is asserted—and a
description that describes the purpose of the assertion. If the value evaluates to true,
and in other words is “truthy,” the assertion passes; otherwise it’s considered a failure.
The associated message is usually logged with an appropriate pass/fail indicator.

 A simple implementation of this concept can be seen in the next listing.

<html>
 <head>
 <title>Test Suite</title>
 <script>

 function assert(value, desc) {
 var li = document.createElement("li");
 li.className = value ? "pass" : "fail";
 li.appendChild(document.createTextNode(desc));
 document.getElementById("results").appendChild(li);
 }

 window.onload = function() {
 assert(true, "The test suite is running.");
 assert(false, "Fail!");
 };
 </script>

 <style>
 #results li.pass { color: green; }
 #results li.fail { color: red; }
 </style>
 </head>

 <body>
 <ul id="results">
 </body>
</html>

The function named assert() B is almost surprisingly straightforward. It creates a
new element containing the description, assigns a class named pass or fail,
depending upon the value of the assertion parameter (value), and appends the new
element to a list element in the document body e.

 The test suite consists of two trivial tests c: one that will always succeed, and one
that will always fail.

 Style rules for the pass and fail classes d visually indicate success or failure
using colors.

Listing 2.4 A simple implementation of a JavaScript assertion

Defines assert()
method

 b

Executes tests
using assertions

 c

Defines styles
for results

 d

Holds test
results

 e
Licensed to Maxeta Technologies <account@maxetatech.com>

24 CHAPTER 2 Arming with testing and debugging
 This function is simple, but it will serve as a good building block for future devel-
opment, and we’ll be using this assert() method throughout the book to test various
code snippets, verifying their integrity.

2.4.2 Test groups

Simple assertions are useful, but they really begin to shine when they’re grouped
together in a testing context to form test groups.

 When performing unit testing, a test group will likely represent a collection of
assertions as they relate to a single method in our API or application. If you were
doing behavior-driven development, the group would collect assertions by task. Either
way, the implementation is effectively the same.

 In our sample test suite, a test group is built in which individual assertions are
inserted into the results. Additionally, if any assertion fails, then the entire test group
is marked as failing. The output in the next listing is kept pretty simple—some level of
dynamic control would prove to be quite useful in practice (contracting/expanding
the test groups and filtering test groups if they have failing tests in them).

<html>
 <head>
 <title>Test Suite</title>
 <script>

 (function() {
 var results;
 this.assert = function assert(value, desc) {
 var li = document.createElement("li");
 li.className = value ? "pass" : "fail";
 li.appendChild(document.createTextNode(desc));
 results.appendChild(li);
 if (!value) {
 li.parentNode.parentNode.className = "fail";
 }
 return li;
 };
 this.test = function test(name, fn) {
 results = document.getElementById("results");
 results = assert(true, name).appendChild(
 document.createElement("ul"));
 fn();
 };
 })();

 window.onload = function() {
 test("A test.", function() {
 assert(true, "First assertion completed");
 assert(true, "Second assertion completed");
 assert(true, "Third assertion completed");
 });
 test("Another test.", function() {
 assert(true, "First test completed");
 assert(false, "Second test failed");

Listing 2.5 An implementation of test grouping
Licensed to Maxeta Technologies <account@maxetatech.com>

25The fundamentals of a test suite
 assert(true, "Third assertion completed");
 });
 test("A third test.", function() {
 assert(null, "fail");
 assert(5, "pass")
 });
 };
 </script>
 <style>
 #results li.pass { color: green; }
 #results li.fail { color: red; }
 </style>
 </head>
 <body>
 <ul id="results">
 </body>
</html>

As can be seen in listing 2.5, the implementation is really not much different from the
basic assertion logging. The one major difference is the inclusion of a results variable,
which holds a reference to the current test group (that way the logging assertions are
inserted correctly).

 Beyond simple testing of code, another important aspect of a testing framework is
the handling of asynchronous operations.

2.4.3 Asynchronous testing

A daunting and complicated task that many developers encounter while developing a
JavaScript test suite is handling asynchronous tests. These are tests whose results will
come back after a nondeterministic amount of time has passed; common examples of
this situation are Ajax requests and animations.

 Often the handling of this issue is over-engineered and made much more complicated
than it needs be. To handle asynchronous tests, we need to follow a couple of simple steps:

1 Assertions that rely upon the same asynchronous operation need to be grouped
into a unifying test group.

2 Each test group needs to be placed on a queue to be run after all the previous
test groups have finished running.

Thus, each test group must be capable of running asynchronously.
 Let’s look at an example in the next listing.

<html>
 <head>
 <title>Test Suite</title>
 <script>
 (function() {
 var queue = [], paused = false, results;
 this.test = function(name, fn) {
 queue.push(function() {
 results = document.getElementById("results");

Listing 2.6 A simple asynchronous test suite
Licensed to Maxeta Technologies <account@maxetatech.com>

26 CHAPTER 2 Arming with testing and debugging
 results = assert(true, name).appendChild(
 document.createElement("ul"));
 fn();
 });
 runTest();
 };
 this.pause = function() {
 paused = true;
 };
 this.resume = function() {
 paused = false;
 setTimeout(runTest, 1);
 };
 function runTest() {
 if (!paused && queue.length) {
 queue.shift()();
 if (!paused) {
 resume();
 }
 }
 }

 this.assert = function assert(value, desc) {
 var li = document.createElement("li");
 li.className = value ? "pass" : "fail";
 li.appendChild(document.createTextNode(desc));
 results.appendChild(li);
 if (!value) {
 li.parentNode.parentNode.className = "fail";
 }
 return li;
 };
 })();
 window.onload = function() {
 test("Async Test #1", function() {
 pause();
 setTimeout(function() {
 assert(true, "First test completed");
 resume();
 }, 1000);
 });
 test("Async Test #2", function() {
 pause();
 setTimeout(function() {
 assert(true, "Second test completed");
 resume();
 }, 1000);
 });
 };
 </script>
 <style>
 #results li.pass {
 color: green;
 }

 #results li.fail {
 color: red;
 }
 </style>
Licensed to Maxeta Technologies <account@maxetatech.com>

27Summary
 </head>
 <body>
 <ul id="results">
 </body>
</html>

Let’s break down the functionality exposed in listing 2.6. There are three publicly
accessible functions: test(), pause(), and resume(). These three functions have the fol-
lowing capabilities:

■ test(fn) takes a function that contains a number of assertions—assertions that
will be run either synchronously or asynchronously—and places it on the queue
to await execution.

■ pause() should be called from within a test function and tells the test suite to
pause executing tests until the test group is done.

■ resume() unpauses the tests and starts the next test running after a short delay
designed to avoid long-running code blocks.

The one internal implementation function, runTest(), is called whenever a test is
queued or dequeued. It checks to see if the suite is currently unpaused and if there’s
something in the queue, in which case it’ll dequeue a test and try to execute it. Addi-
tionally, after the test group is finished executing, runTest() will check to see if the
suite is currently paused, and if it’s not (meaning that only asynchronous tests were
run in the test group), runTest() will begin executing the next group of tests.

 We’ll be taking a closer look at delayed execution in chapter 8, which focuses on
timers, where we’ll examine in depth the details relating to delaying the execution of
JavaScript code.

2.5 Summary
In this chapter, we’ve looked at some of the basic techniques related to debugging
JavaScript code and constructing simple test cases based upon those results:

■ We examined how to use logging to observe the actions of our code as it’s run-
ning, and we even implemented a convenience method that we can use to make
sure that we can successfully log information in both modern and legacy brows-
ers, despite their differences.

■ We explored how we can use breakpoints to halt the execution of our code at a
certain point, allowing us to take a look around at the state in which the code
is executing.

■ We then turned to test generation, defining and focusing on the attributes of
good tests: repeatability, simplicity, and independence. The two major types of test-
ing, deconstructive and constructive testing, were examined.

■ We also presented some data regarding how the JavaScript community uses test-
ing, and we briefly surveyed existing test frameworks that you might want to
explore and adopt, should you want to use a formalized testing environment.
Licensed to Maxeta Technologies <account@maxetatech.com>

28 CHAPTER 2 Arming with testing and debugging
■ Building upon that, we introduced the concept of the assertion, and we created
a simple implementation that will be used throughout the remainder of this
book to verify that the code does what we intend it to do.

■ Finally, we looked at how to construct a simple test suite capable of handling
asynchronous test cases. Altogether, these techniques will serve as an important
cornerstone to the rest of our development with JavaScript.

We are now equipped to begin training. Take a short breather and then proceed to
the training arena, where the first lesson may not be on the subject that you would
expect it to be!
Licensed to Maxeta Technologies <account@maxetatech.com>

Part 2

Apprentice training

Now that you’re mentally prepared for training and you’re armed with the
basic testing tools that we developed in the previous section, you’re ready to
learn the fundamentals of the JavaScript tools and weapons available to you.

 In chapter 3, you’ll learn all about the most important basic concept of
JavaScript: no, not the object, but the function. This chapter will teach you why under-
standing JavaScript functions is the key to unlocking the secrets of the language.

 Chapter 4 continues our in-depth exploration of functions—yes, they are
important enough to warrant multiple chapters—showing how functions can be
used to solve the challenges and problems that we face as web developers.

 Chapter 5 takes functions to the next level with training on closures—prob-
ably one of the most misunderstood (and even unknown) aspects of the Java-
Script language.

 Object fundamentals are the subject of your training in chapter 6, with particu-
lar focus on how the blueprint of objects is determined by its prototype. This chap-
ter will teach you how the object-oriented nature of JavaScript can be exploited.

 From there, your training heads into deeper territory, with a thorough exam-
ination of regular expressions in chapter 7. You’ll learn that many tasks that used
to take reams of code to accomplish can be condensed to a mere handful of
statements through the proper use of JavaScript regular expressions.

 Your apprentice training then completes with chapter 8’s lessons on how tim-
ers work, including lessons on the single-thread model that JavaScript employs.
You’ll learn how to not let it best you, and also how to use it to your advantage.

Licensed to Maxeta Technologies <account@maxetatech.com>

Licensed to Maxeta Technologies <account@maxetatech.com>

Functions are fundamental
You might have been somewhat surprised, upon turning to this part of the book
dedicated to JavaScript fundamentals, to see that the first topic of discussion is to
be functions rather than objects.

 We’ll certainly be paying plenty of attention to objects (particularly in chapter 6),
but when it comes down to brass tacks, the main difference between writing Java-
Script code like the average Joe (or Jill) and writing it like a JavaScript ninja is
understanding JavaScript as a functional language. The level of the sophistication of
all the code you’ll ever write in JavaScript hinges upon this realization.

 If you’re reading this book, you’re not a rank beginner and we’re assuming that
you know enough object fundamentals to get by for now (and we’ll be taking a look
at more advanced object concepts in chapter 6), but really understanding functions

In this chapter we discuss
■ Why understanding functions is so crucial
■ How functions are first-class objects
■ How the browser invokes functions
■ Declaring functions
■ The secrets of how parameters are assigned
■ The context within a function
31

Licensed to Maxeta Technologies <account@maxetatech.com>

32 CHAPTER 3 Functions are fundamental
in JavaScript is the single most important weapon you can wield. So important, in fact,
that this and the following two chapters are going to be devoted to thoroughly under-
standing functions in JavaScript.

 Most importantly, in JavaScript, functions are first-class objects; that is, they coexist
with, and can be treated like, any other JavaScript object. Just like the more mundane
JavaScript data types, they can be referenced by variables, declared with literals, and
even passed as function parameters.

 The fact that JavaScript treats functions as first-class objects is going to be important
on a number of levels, but one significant advantage comes in the form of code terse-
ness. To take a sneak-peek ahead to some code that we’ll examine in greater depth in
section 3.1.2, consider this imperative code (in Java) that performs a collection sort:

Arrays.sort(values,new Comparator<Integer>(){
 public int compare(Integer value1, Integer value2) {
 return value2 - value1;
 }
});

Here’s the JavaScript equivalent written using a functional approach:

values.sort(function(value1,value2){ return value2 - value1; });

Don’t be too concerned if the notation seems odd—you’ll be an old hand at it by the
end of this chapter. We just wanted to give you a glimpse of one of the advantages that
understanding JavaScript as a functional language will bring to the table.

 This chapter will thoroughly examine JavaScript’s focus on functions and give you
a sound basis on which to bring your JavaScript code to a level that any master would
be proud of.

3.1 What’s with the functional difference?
How many times have you heard someone moan, “I hate JavaScript”?

 We’re willing to bet that nine times out of ten (or perhaps even more), this is a
direct consequence of someone trying to use JavaScript as if it were another language
that the lamenter is more familiar with, and that they’re frustrated by the fact that
it’s not that other language. This is probably most common with those coming to
JavaScript from a language such as Java, a decidedly nonfunctional language, but one
that a lot of developers learn before their exposure to JavaScript.

 Making matters even worse for these developers is
the unfortunate naming choice of JavaScript. Without
belaboring the history behind that naming decision,
perhaps developers would have fewer incorrect pre-
conceived notions about JavaScript if it had retained
the name LiveScript or been given some other less
confusing name. Because JavaScript, as the old joke
depicted in figure 3.1 goes, has as much to do with
Java as a hamburger has to do with ham.

Figure 3.1 JavaScript is to Java
as hamburger is to ham; both are
delicious, but they don’t have
much in common except a name.
Licensed to Maxeta Technologies <account@maxetatech.com>

33What’s with the functional difference?
TIP For more information on how JavaScript got its name, see http://en
.wikipedia.org/wiki/JavaScript#History, http://web.archive.org/web/200709
16144913/http://wp.netscape.com/newsref/pr/newsrelease67.html, and http://
stackoverflow.com/questions/2018731/why-is-javascript-called-javascript-since-it-
has-nothing-to-do-with-java. If you follow these links, they indicate that the
intent was to identify JavaScript as a complement to Java, rather than something
that shared its characteristics.

Hamburgers and ham are both foods that are meat products, just as JavaScript and
Java are both programming languages with a C-influenced syntax. But other than
that, they don’t have much in common and are fundamentally different right down
to their DNA.

NOTE Another factor that plays into some developers’ poor initial reaction to
JavaScript may be that most developers are introduced to JavaScript in the
browser. Rather than reacting to JavaScript, the language, they may be recoil-
ing from the JavaScript bindings to the DOM API. And the DOM API ... well,
let’s just say that it isn’t going to win any Friendliest API of the Year awards. But
that’s not JavaScript’s fault.

Before we learn about how functions are such a central and key concept in JavaScript,
let’s consider why the functional nature of JavaScript is so important, especially for
code written for the browser.

3.1.1 Why is JavaScript’s functional nature important?

If you’ve done any amount of scripting in a browser, you probably know all that we’re
going to discuss in this section, but let’s go over it anyway to make sure we’re all using
the same vernacular.

 One of the reasons that functions and functional concepts are so important in
JavaScript is that the function is the primary modular unit of execution. Except for
the inline script that runs while the markup is being evaluated, all of the script code
that we’ll write for our pages will be within a function.

NOTE Back in the Dark Ages, inline script was used to add dynamism to pages
via document.write(). These days, document.write() is considered a dinosaur
and its use isn’t recommended. There are better ways to make pages dynamic,
such as the use of server-side templating, client-side DOM manipulation, or a
healthy combination of both.

Because most of our code will run as the result of a function invocation, we’ll see that
having functions that are versatile and powerful constructs will give us a great deal of
flexibility and sway when writing our code. We’ll spend the rest of this chapter exam-
ining just how the nature of functions as first-class objects can be exploited to our
great benefit.

 Now, that’s the second time we’ve used the term “first-class object,” and it’s an
important concept, so before we go on, let’s make sure we know what it really means.
Licensed to Maxeta Technologies <account@maxetatech.com>

http://en.wikipedia.org/wiki/JavaScript#History
http://en.wikipedia.org/wiki/JavaScript#History
http://web.archive.org/web/20070916144913/http://wp.netscape.com/newsref/pr/newsrelease67.html
http://web.archive.org/web/20070916144913/http://wp.netscape.com/newsref/pr/newsrelease67.html
http://stackoverflow.com/questions/2018731/why-is-javascript-called-javascript-since-it-has-nothing-to-do-with-java
http://stackoverflow.com/questions/2018731/why-is-javascript-called-javascript-since-it-has-nothing-to-do-with-java
http://stackoverflow.com/questions/2018731/why-is-javascript-called-javascript-since-it-has-nothing-to-do-with-java

34 CHAPTER 3 Functions are fundamental
FUNCTIONS AS FIRST-CLASS OBJECTS

Objects in JavaScript enjoy certain capabilities:

■ They can be created via literals.
■ They can be assigned to variables, array entries, and properties of other objects.
■ They can be passed as arguments to functions.
■ They can be returned as values from functions.
■ They can possess properties that can be dynamically created and assigned.

Functions in JavaScript possess all of these capabilities and are thus treated like any
other object in the language. Therefore, we say that they’re first-class objects.

 And more than being treated with the same respect as other object types, functions
have a special capability in that they can be invoked.

 That invocation is frequently discharged in an asynchronous manner, so let’s talk a
little about why that is.

THE BROWSER EVENT LOOP

If you’ve done any programming to create graphical user interface (GUI) desktop
applications, you’ll know that most are written in a similar fashion:

■ Set up the user interface
■ Enter a loop waiting for events to occur
■ Invoke handlers (also called listeners) for those events

Programming for the browser is no different, except that our code isn’t responsible
for running the event loop and dispatching events; the browser handles that for us.

 Our responsibility is to set up the handlers for the various events that can occur in
the browser. These events are placed in an event queue (a FIFO list; more on that
later) as they occur, and the browser dispatches these events by invoking any handlers
that have been established for them.

 Because these events happen at unpredictable times and in an unpredictable
order, we say that the handling of the events, and therefore the invocation of their
handling functions, is asynchronous.

 The following types of events can occur, among others:

■ Browser events, such as when a page is finished loading or when it’s to be
unloaded

■ Network events, such as responses to an Ajax request
■ User events, such as mouse clicks, mouse moves, or keypresses
■ Timer events, such as when a timeout expires or an interval fires

The vast majority of our code executes as a result of such events. Consider the following:

function startup(){
 /* do something wonderful */
}
window.onload = startup;
Licensed to Maxeta Technologies <account@maxetatech.com>

35What’s with the functional difference?
Here, we establish a function to serve as a handler for the load event. The establishing
statement executes as part of the inline script (assuming it appears at the top level and
not within any other function), but the wonderful things that we’re going to do inside
the function don’t execute until the browser finishes loading the page and fires off a
load event.

 In fact, we can simplify this to a single line if we like. Consider this:

window.onload = function() { /* do something wonderful */ };

(If the notation used to create the function looks odd to you, be assured that we’ll be
making it crystal clear in section 3.2.)

It’s important to note that the browser event loop is single-threaded. Every event that’s
placed into the event queue is handled in the order that it’s placed onto the queue.
This is known as a FIFO list (first-in, first-out), or perhaps a silo to the old-timers. Each
event is processed in its own “turn,” and all other events have to wait until the current
event’s turn is over. Under no circumstances are two handlers executing simultane-
ously in separate threads.

 Think of a line at the bank. Everyone gets into a single line and has to wait their
turn to be “processed” by the tellers. But with JavaScript, there’s only one teller window
open! So the customers only get processed one at a time, as their turn comes. All it
takes is one person, who thinks it’s appropriate to do their financial planning for the
fiscal year while they’re at the teller’s window (we’ve all run into them!), to gum up
the whole works.

Unobtrusive JavaScript
The approach of assigning a function, named or otherwise, to the onload property of
the window instance may not be the way that you’re used to setting up a load handler.
You may be more accustomed to using the onload attribute of the <body> tag.

Either approach achieves the same effect, but the window.onload approach is vastly
preferred by JavaScript ninjas as it adheres to a popular principle known as unobtru-
sive JavaScript.

Remember when the advent of CSS pioneered the moving of style information out of
the document markup? Few would argue that segregating style from structure was a
bad move. Unobtrusive JavaScript does the same thing for behavior, moving scripts
out of the document markup.

This results in pages having their three primary components—structure, style, and
behavior— nicely partitioned into their own locations. Structure is defined in the doc-
ument markup, style in <style> elements or external style sheets, and behavior in
<script> blocks or external script files.

You won’t see any script embedded into document markup in the examples in this
book, unless it’s to make a specific point or to vastly simplify the example.
Licensed to Maxeta Technologies <account@maxetatech.com>

36 CHAPTER 3 Functions are fundamental
We’ll explore this execution model, and ways of dealing with its challenges, in great
depth in chapter 8.

 A vastly simplified overview of this process is shown in figure 3.2.
 This concept is central to on-page JavaScript, and it’s something we’ll see again and

again throughout the examples in this book: code is set up in advance in order to
execute at a later time. Except for inline setup code, the vast majority of the code that
we place onto a page is going to execute as the result of an event (as part of the “Pro-
cess event” box in figure 3.2).

 It’s important to note that the browser mechanism that puts the events onto the
queue is external to this event loop model. The processing necessary to determine
when events have occurred and to push them onto the event queue doesn’t partici-
pate in the thread that’s handling the events.

 For example, when the end user waves the mouse around on the page, the browser
will detect these motions and push a bunch of mousemove events onto the event queue.
The event loop will eventually come across these events and trigger any handlers
established for that type of event.

 Such event handlers are examples of a more general concept known as callback
functions. Let’s explore that very important concept.

THE CALLBACK CONCEPT

Whenever we set up a function to be called at a later time, whether by the browser or
other code, we’re setting up what is termed a callback. The term stems from the fact
that we establish a function that some other code will later “call back” into at an
appropriate point of execution.

Parse markup
and set up DOM

Check for event
at head of queue

Is there
one?

Process event

Yes

No

Event queue Keypresses

Mouse clicks

Network events

Figure 3.2 A simplified view of how browsers process the event
loop, handling each event in its own turn within a single thread
Licensed to Maxeta Technologies <account@maxetatech.com>

37What’s with the functional difference?
 Callbacks are an essential part of using JavaScript effectively, and we’re about to
look at a real-world example of how callbacks are used. But it’s a tad complex, so
before we dive into it, let’s strip the callback concept completely naked and examine it
in its simplest form.

 We’ll see callbacks used extensively as event handlers throughout the remainder of
this book, but event handlers are just one example of callbacks; we can even employ
callbacks ourselves in our own code. Here’s an illuminating example of a completely
useless function that accepts a reference to another function as a parameter and calls
that function as a callback:

function useless(callback) { return callback(); }

As useless as this function is, it helps us demonstrate the ability to pass a function as an
argument to another function, and to subsequently invoke that function through the
passed parameter.

 We can test our useless function with this code:

var text = 'Domo arigato!';
assert(useless(function(){ return text; }) === text,
 "The useless function works! " + text);

Here, we use the assert() testing function that we set up in the previous chapter to
verify that the callback function is invoked and returns the expected value, which is in
turn returned as the useless value. The result is shown in figure 3.3.

 That was really, really easy. And that’s because JavaScript’s functional nature lets us
deal with functions as first-class objects.

 Now let’s consider a not-so-useless example and compare it with using callbacks in
a nonfunctional language.

3.1.2 Sorting with a comparator
Almost as soon as we have a collection of data, odds are we’re going to need to sort it
in some fashion. And as it turns out, we’re going to need a callback in order to do any-
thing but the most simple of sort operations.

 Let’s say that we have an array of some numbers in a random order: 213, 16, 2058,
54, 10, 1965, 57, 9. That order might be just fine, but chances are that, sooner or later,
we’re going to want to rearrange them into some sorted order.

Figure 3.3 Our useless function may
not do much, but it shows that functions
can be passed around and invoked at any
later time.
Licensed to Maxeta Technologies <account@maxetatech.com>

38 CHAPTER 3 Functions are fundamental
Both Java and JavaScript provide a simple means to sort arrays into ascending order.
Here it is in Java:

Integer[] values = { 213, 16, 2058, 54, 10, 1965, 57, 9 };
Arrays.sort(values);

Here’s the JavaScript version:

var values = [213, 16, 2058, 54, 10, 1965, 57, 9];
values.sort();

NOTE We’re not picking on Java—really, we’re not. It’s a fine language. We’re
just using Java as the crutch here because it’s a good example of a language
without functional capabilities, and one that lots of developers coming to
JavaScript are familiar with.

There are some minor differences between the implementations of sorting in these lan-
guages—most notably, Java supplies a utility class with a static function, whereas
JavaScript provides the capability as a method on the array itself—but both approaches
are straightforward and easy to understand. But if we decide we want a sorting order
other than ascending—something as simple as descending, for example—things start
to diverge rather markedly.

 In order to allow us to sort the values into any order we want, both languages let us
provide a comparison algorithm that tells the sort algorithm how the values should be
ordered. Instead of just letting the sort algorithm decide what values go before other
values, we’ll provide a function that performs the comparison. We’ll give the sort algo-
rithm access to this function as a callback, and it will call it whenever it needs to make
a comparison. The concept is similar in both languages, but the implementations
couldn’t be more different.

 In nonfunctional Java, methods can’t exist on their own and can’t be passed as
arguments to other methods. Rather, they must be declared as members of an object
that can be instantiated and passed to a method. Therefore, the Arrays.sort() method
has an overload that accepts an object containing the comparison method that it will
call as a callback whenever a comparison needs to be made. This object and its
method must conform to a known format (Java being strongly typed), so an interface
needs to be defined. In this case, the Java library provides the following interface (in
general cases, you may need to define your own):

public interface Comparator<T> {
 int compare(T t, T t1);
 boolean equals(Object o);
}

A novice Java developer might create a concrete class that implements this inter-
face, but to make a fair comparison, we’re going to assume a fair level of Java
savvy-ness and use an inline anonymous implementation. A usage of the Arrays
.sort() static method to sort the values in descending order could look like the
following code:
Licensed to Maxeta Technologies <account@maxetatech.com>

39What’s with the functional difference?
Arrays.sort(values,new Comparator<Integer>(){
 public int compare(Integer value1, Integer value2) {
 return value2 - value1;
 }
});

The compare() method of the inline Comparator implementation is expected to return a
negative number if the order of the passed values should be reversed, a positive num-
ber if not, and zero if the values are equal, so simply subtracting the values produces
the desired return value to sort the array into descending order.

 The result of running the preceding code is the re-sorted array:

2058, 1965, 213, 57, 54, 16, 10, 9

That wasn’t overly complicated, but it did involve a fair amount of syntax, especially if
you include the declaration of the required interface, to perform an operation that’s
fairly simple in nature.

 The wordiness of this approach becomes even more apparent when we consider the
equivalent JavaScript code that takes advantage of JavaScript’s functional capabilities:

var values = [213, 16, 2058, 54, 10, 1965, 57, 9];
values.sort(function(value1,value2){ return value2 - value1; });

No interfaces. No extra object. One line. We simply declare an inline anonymous
function that we directly pass to the sort() method of the array.

 The functional difference in JavaScript allows us to create a function as a stand-
alone entity, just as we can any other object type, and to pass it as an argument to a
method, just like any other object type, which can accept it as a parameter, just like
any other object type. It’s that “first-class” status coming into play.

 That’s not even remotely possible in nonfunctional languages such as Java.

NOTE There’s a strong possibility that functional aspects will be added to Java
in Java 8 as “lambda expressions,” but for now, Java isn’t a functional lan-
guage. If you like Java, but want something with more functional capabilities,
you might try Groovy. It’s a JVM language that brings functional capabilities to
a very Java-like language, and it has been gaining traction lately (thanks to the
Grails web framework).

One of the most important features of the JavaScript language is the ability to create
functions anywhere in the code where an expression can appear. In addition to mak-
ing the code more compact and easy to understand (by putting function declarations
near where they’re used), this feature can also eliminate the need to pollute the
global namespace with unnecessary names when a function isn’t going to be refer-
enced from multiple places within the code.

 But regardless of how functions are declared (much more on this in the upcoming
section), they can be referenced as values and be used as the fundamental building
blocks for reusable code libraries. Understanding how functions, including anonymous
functions, work at their most fundamental level will drastically improve our ability to
write clear, concise, and reusable code.
Licensed to Maxeta Technologies <account@maxetatech.com>

40 CHAPTER 3 Functions are fundamental
 Now let’s take a more in-depth look at how functions are declared and invoked.
On the surface it may seem that there’s not much to the acts of declaring and invok-
ing functions, but there’s actually a lot going on that we need to be aware of.

3.2 Declarations
JavaScript functions are declared using a function literal that creates a function value in
the same way that a numeric literal creates a numeric value. Remember that, as first-
class objects, functions are values that can be used in the language just like other val-
ues, such as strings and numbers. And whether you realize it or not, you’ve been
doing that all along.

 Function literals are composed of four parts:

1 The function keyword.
2 An optional name that, if specified, must be a valid JavaScript identifier.
3 A comma-separated list of parameter names enclosed in parentheses. The

names must be valid identifiers and the list can be empty. The parentheses must
always be present, even with an empty parameter list.

4 The body of the function, as a series of JavaScript statements enclosed in braces.
The body can be empty, but the braces must always be present.

The fact that the function name is optional may come as a surprise to some develop-
ers, but we’ve seen ample examples of just such anonymous functions in the previous
section. If there’s no need for a function to be referenced by its name, we don’t have
to give it one. (Sort of like the joke about cats: why give a cat a name if it’s not going to
come when called?)

 When a function is named, that name is valid throughout the scope within which
the function is declared. Additionally, if a named function is declared at the top level,
a property using the function name is created on window that references the function.

 And lastly, all functions have a property named name that stores the function’s name as
a string. Functions with no name still possess this property, set to the empty string.

 But why say all that when we can prove it? We can write tests to assert that what we’ve
said about functions is true. Examine the following code.

<script type="text/javascript">

 function isNimble(){ return true; }

 assert(typeof window.isNimble === "function",
 "isNimble() defined");
 assert(isNimble.name === "isNimble",
 "isNimble() has a name");

 var canFly = function(){ return true; };

Listing 3.1 Proving things about the way that functions are declared

Declares a named function. The name is available throughout the current scope
and is implicitly added as a property of window. b

The first test asserts that the window property
is established, and the second that the name

property of the function is recorded. c

Creates an anonymous function that’s assigned to the
variable canFly. The variable is a window property,
and the name property of the function is empty. d
Licensed to Maxeta Technologies <account@maxetatech.com>

41Declarations

T
t
p
r
f
c
t
f
e
p

 assert(typeof window.canFly === "function",
 "canFly() defined");
 assert(canFly.name === "",
 "canFly() has no name");

 window.isDeadly = function(){ return true; };

 assert(typeof window.isDeadly === "function",
 "isDeadly() defined");

 function outer(){
 assert(typeof inner === "function",
 "inner() in scope before declaration");
 function inner(){}
 assert(typeof inner === "function",
 "inner() in scope after declaration");
 assert(window.inner === undefined,
 "inner() not in global scope");
 }

 outer();
 assert(window.inner === undefined,
 "inner() still not in global scope");

 window.wieldsSword = function swingsSword() { return true; };

 assert(window.wieldsSword.name === 'swingsSword',
 "wieldSword's real name is swingsSword");

</script>

In this test page, we declare globally scoped functions in three different ways:

■ The isNimble() function is declared as a named function B. This is likely the
most common declaration style that most developers have seen. That will
change as you progress through this book.

■ An anonymous function is created and assigned to a global variable named
canFly d. Because of JavaScript’s functional nature, the function can be
invoked through this reference as canFly(). In this respect, it’s almost function-
ally equivalent (no pun intended) to declaring a named function named “can-
Fly”, but not quite. One major difference is that the function’s name property is
“”, not “canFly”.

■ Another anonymous function is declared and assigned to a window property
named isDeadly f. Again, we can invoke the function through this property
(window.isDeadly() or simply isDeadly()), and this is again almost functionally
equivalent to a named function named “isDeadly”.

Throughout the example, we placed assertions that verify that what we said about
functions is true, the results of these tests being shown in figure 3.4.

 The test proves the following:

Tests that the variable references
the anonymous function and that
the name property is set to the
empty string (not null).

 e

Creates an anonymous function
referenced by property of window. f

ests
hat the
roperty
eferences the
unction. We
ould also test
hat the
unction has an
mpty name
roperty here.

 g Defines an inner function inside the
outer function. Tests that inner() is

able to be referenced before and
after its declaration and that no
global name is created for inner().

 h

Tests that outer() can be
referenced in the global scope,
but that inner() can’t.

 i

The variable that we
assign a function to

has nothing to do
with its name; that’s

controlled by what we
actually name the

function in its literal.
Licensed to Maxeta Technologies <account@maxetatech.com>

42 CHAPTER 3 Functions are fundamental
■ That window.isNimble is defined as a function. This proves that named functions
are added as properties to window c.

■ That the named function isNimble() has a name property that contains the string
“isNimble” c.

■ That window.canFly is defined as a function, proving that global variables, even
those containing functions, end up on window e.

■ That the anonymous function assigned to canFly has a name property consist-
ing of the empty string e.

■ That window.isDeadly is defined as a function g.

NOTE This is far from a complete test set of everything that we said about func-
tions so far. How would you extend this test code to assert the suppositions for
the declared functions?

Then comes the time to test nonglobal functions. We create a function, appropriately
named outer(), in which we’ll test our assertions regarding functions declared in a non-
global scope h. We declare an inner function named inner(), but before it’s declared,
we assert that the function is in scope. This tests our assertion that a function is available
throughout the scope within which it’s declared, even when forward-referenced.

 Then we declare the function, check that it’s within scope inside the function, and
check that it isn’t within the global scope.

 Finally, we execute the inner test and once again assert that the inner function
didn’t creep its way out into the global scope i.

 These concepts are very important, as they lay down the foundations for the nam-
ing, flow, and structure that functional code provides, and they begin to establish the
framework through which we employ functional programming to our great benefit.

 The point we made with the inner function i—namely, that the function is
forward-referenceable within the outer function—may have you wondering: “When
we declare a function, what scope is that function available within?” It’s a good ques-
tion and one that we’ll answer next.

Figure 3.4 Running our test
page shows that all those things
that we said about functions
are true!
Licensed to Maxeta Technologies <account@maxetatech.com>

43Declarations
3.2.1 Scoping and functions

When we declare a function, not only do we need to be concerned with the scope
within which that function is available, but also with what scopes the function itself cre-
ates and how declarations within the function are affected by those scopes.

 Scopes in JavaScript act somewhat differently than in most other languages whose
syntax is influenced by C; namely, those that use braces ({ and }) as block delimiters. In
most such languages, each block creates its own scope; not so in JavaScript!

 In JavaScript, scopes are declared by functions, and not by blocks. The scope of a
declaration that’s created inside a block isn’t terminated (as it is in other languages)
by the end of the block.

 Consider the following code:

if (window) {
 var x = 213;
}
alert(x);

In most other languages, one would expect the scope of the declaration for x to termi-
nate at the end of the block created by the if statement, and for the alert to fail with
an undefined value. But if we were to run the preceding code in a page, the value 213
would be alerted because JavaScript doesn’t terminate scopes at the end of blocks.

 That seems simple enough, but there are a few nuances to the scoping rules that
depend upon what is being declared. Some of these nuances may come as a bit of
a surprise:

■ Variable declarations are in scope from their point of declaration to the end of
the function within which they’re declared, regardless of block nesting.

■ Named functions are in scope within the entire function within which they’re
declared, regardless of block nesting. (Some call this mechanism hoisting.)

■ For the purposes of declaration scopes, the global context acts like one big
function encompassing the code on the page.

Once again, instead of just saying it, we’re going to prove it. Take a look at the follow-
ing code snippet:

function outer(){

 var a = 1;

 function inner(){ /* does nothing */ }

 var b = 2;

 if (a == 1) {
 var c = 3;
 }

}

outer();
Licensed to Maxeta Technologies <account@maxetatech.com>

44 CHAPTER 3 Functions are fundamental
In this code, we declare five items: an outer function named outer(), a function inside
that named inner(), and three numeric variables inside the outer function named a, b,
and c.

 To test where the various items are in scope—and, perhaps more importantly, where
they aren’t—we’ll intersperse a block of tests throughout this code. We’ll put the same
block of tests, with one test for each of these declarations, at strategic places in the
code. Each test asserts that one of the items we’re declaring is in scope (except for
the first, which isn’t a test at all, but just a label that will help keep the code and out-
put more readable).

 This is the test block:

assert(true,"some descriptive text");
assert(typeof outer==='function',
 "outer() is in scope");
assert(typeof inner==='function',
 "inner() is in scope");
assert(typeof a==='number',
 "a is in scope");
assert(typeof b==='number',
 "b is in scope");
assert(typeof c==='number',
 "c is in scope");

Note that in many circumstances, some of these tests will fail. Under normal circum-
stances, we’d expect our asserts to always pass; but in this code, which is only for dem-
onstration, it suits our purposes to show where the tests pass and where they fail,
which directly corresponds to whether the tested item is in scope or not.

 Listing 3.2 shows the completely assembled code, omitting the repeated test so
that we can see the forest for the trees. (Wherever the test code has been removed, we
show the comment /* test code here */ so you’ll know where the test code appears in
the actual page file.)

<script type="text/javascript">

 assert(true,"|----- BEFORE OUTER -----|");
 /* test code here */

 function outer(){
 assert(true,"|----- INSIDE OUTER, BEFORE a -----|");
 /* test code here */

 var a = 1;

Listing 3.2 Observing the scoping behavior of declarations

Runs the test block before we’ve defined anything at all. All our tests assert that
each item is in scope, so all but the tests for items that can be forward-

referenced will fail. As such, only the top-level function
outer() is in scope at this point. See figure 3.5

(or better yet, run the code in your browser
so that you don’t have to flip pages

as much) to verify that all tests but
that for outer() fail.

Runs the test block inside function outer() but before anything else
has been declared. The outer() function is still in scope as is the inner()
function, which is defined within the outer() function. Functions can be

forward-referenced, but not variable declarations, so all other tests fail.
Licensed to Maxeta Technologies <account@maxetatech.com>

45Declarations

nd b
at b
that
oot .
g of
tion
ope.

Runs
inside
afte
has b
decla
that
Tests
all it
scope
point
 assert(true,"|----- INSIDE OUTER, AFTER a -----|");
 /* test code here */

 function inner(){ /* does nothing */ }

 var b = 2;

 assert(true,"|----- INSIDE OUTER, AFTER inner() AND b -----|");
 /* test code here */

 if (a == 1) {
 var c = 3;
 assert(true,"|----- INSIDE OUTER, INSIDE if -----|");
 /* test code here */
 }

 assert(true,"|----- INSIDE OUTER, OUTSIDE if -----|");
 /* test code here */

 }

 outer();

 assert(true,"|----- AFTER OUTER -----|");
 /* test code here */

</script>

Running this code results in the display shown in figure 3.5.
 As expected, there are many failures because not all of the items are in scope at

every position where we placed the block of tests.
 Of particular note, see how the declaration of inner() is available (hoisted) through-

out the entire outer() function, whereas the numeric variables a, b, and c are only avail-
able from their point of declaration to the end of outer(). This clearly shows that
function declarations can be forward-referenced within their scope but variables can’t.

 Also take particular note of how the closing of the if statement block within which
c is declared doesn’t terminate the scope of c. Variable c, despite being nested in a
block, is available from its point of declaration to the end of outer(), just like the vari-
ables not defined in a nested block.

 The scopes of the various declared items are graphically depicted in figure 3.6.

PONDER THIS Now that you understand a bit about scope, you should be able
to answer the following question: rather than cutting and pasting the block of
tests over and over again, why did we not create one function to hold them
and call it as needed?

(And no, we’re not going to give you the answer.)

Now that we’ve seen how functions are declared, let’s take a look at how we can
invoke them.

Runs the test block inside outer() and
after the variable a has been declared.

Test results show that a has been added
to the scope at this point.

Runs test code after inner() a
have been declared. Testing shows th

has been added to the scope. The fact
inner() was declared at this point is m
Its scope extends back to the beginnin

the containing function, and its declara
certainly doesn’t remove it from the sc

tests
 if block
r variable c
een
red in
 block.
 show that
ems are in
 at this
.

Runs test code inside outer() but
after if block has been closed.

Tests show that all items are in scope,
even c, although the if block within

which it was declared is closed. Unlike
most other block-structured

languages, variable declarations extend
from the point of declaration to the

end of the function, crossing any
block boundaries.

Runs tests in the global
scope after outer() has been

declared. Once again, only outer()
is in scope because the scope of

anything declared within outer()
is confined to within it.
Licensed to Maxeta Technologies <account@maxetatech.com>

46 CHAPTER 3 Functions are fundamental
3.3 Invocations
We’ve all called JavaScript functions, but have you ever stopped to wonder what really
happens when a function is called? In this section, we’ll examine the various ways that
functions can be invoked.

 As it turns out, the manner in which a function is invoked has a huge impact on
how the code within it operates, primarily in how the this parameter is established.
This difference is much more important than it might seem at first. We’ll examine it
within this section and exploit it throughout the rest of this book to help elevate our
code to ninja level.

 There are actually four different ways to invoke a function, each with its
own nuances:

Figure 3.5 Running our scope
tests clearly shows where the
declared items are in scope and
where they aren’t.
Licensed to Maxeta Technologies <account@maxetatech.com>

47Invocations
■ As a function, in which the function is invoked in a straightforward manner
■ As a method, which ties the invocation to an object, enabling object-oriented

programming
■ As a constructor, in which a new object is brought into being
■ Via its apply() or call() methods, which is kind of complicated, so we’ll cover

that when we get to it

For all but the last of these approaches, the function invocation operator is a set of
parentheses following any expression that evaluates to a function reference. Any argu-
ments to be passed to the function are included inside the parentheses as a comma-
separated list.

 For example:

expression(arg1,arg2);

Before we take a close look at those four ways of making our functions execute, let’s
examine what happens to the arguments that are to be passed to the invocations.

3.3.1 From arguments to function parameters

When a list of arguments is supplied as part of a function invocation, these arguments
are assigned to the parameters specified in the function declaration in the same order
that each was specified. The first argument gets assigned to the first parameter, the
second argument to the second parameter, and so on.

/* tests here */

function outer(){

/* tests here */

var a = 1;

/* tests here */

function inner(){ }/* does nothing */

var b = 2;

/* tests here */

if (a == 1) {

var c = 3;

/* tests here */

}

/* tests here */

}

/* tests here */

sc
o

p
e

o
f
o
u
t
e
r
(
)

sc
o

p
e

o
f
a

sc
o

p
e

o
f
i
n
n
e
r
(
)

sc
o

p
e

o
f
b

sc
o

p
e

o
f
c

Figure 3.6 The scope of each declared item
depends not only on where it’s declared, but
on whether it’s a variable or a function.
Licensed to Maxeta Technologies <account@maxetatech.com>

48 CHAPTER 3 Functions are fundamental
 If there is a different number of arguments than there are parameters, no error is
raised; JavaScript is perfectly fine with this situation and deals with it as follows:

■ If more arguments are supplied than there are parameters, the “excess” argu-
ments are simply not assigned to parameter names.

For example, let’s say that we have a function declared as

function whatever(a,b,c) { ... }

If we were to call it with whatever(1,2,3,4,5), the arguments, 1, 2, and 3 would
be assigned to a, b, and c, respectively. Arguments 4 and 5 are unassigned to
any parameters.

We’ll see in just a bit that even though some arguments aren’t assigned to
parameter names, we still have a way to get at them.

■ If there are more parameters than there are arguments, the parameters that
have no corresponding argument are set to undefined.

For example, if we were to call the whatever(a,b,c) function with whatever(1),
parameter a would be assigned the value 1, and b and c would be set to undefined.

And, very interestingly, all function invocations are also passed two implicit parame-
ters: arguments and this.

 By implicit, we mean that these parameters aren’t explicitly listed in the function
signature, but they’re silently passed to the function and are in scope within the
function. They can be referenced within the function just like any other explicitly
named parameter.

 Let’s take a look at each of these implicit parameters in turn.

THE ARGUMENTS PARAMETER

The arguments parameter is a collection of all of the arguments passed to the func-
tion. The collection has a property named length that contains the count of argu-
ments, and the individual argument values can be obtained using array indexing
notation; arguments[2] would fetch the third parameter, for example.

 But note that we went out of our way to avoid calling the arguments parameter an
array. You may be fooled into thinking that it’s an array; after all, it has a length
parameter, its entries can be fetched using array notation, and we can even iterate
over it with a for loop. But it’s not a JavaScript array, and if you try to use array meth-
ods on arguments, you’ll find nothing but heartbreak and disappointment. Just think
of arguments as an “array-like” construct, and exhibit restraint in its use.

 The this parameter is even more interesting.

THE “THIS” PARAMETER

Whenever a function is invoked, in addition to the parameters that represent the
explicit arguments that were provided on the function call, an implicit parameter
named this is also passed to the function. The this parameter refers to an object that’s
implicitly associated with the function invocation and is termed the function context.
Licensed to Maxeta Technologies <account@maxetatech.com>

49Invocations
 The function context is a notion that those coming from object-oriented lan-
guages such as Java will think that they understand—that this points to an instance of
the class within which the method is defined. But beware! As we’ll see, invocation as a
method is only one of the four ways that a function can be invoked. And as it turns out,
what the this parameter points to isn’t, as in Java, defined by how the function is
declared, but by how it’s invoked. Because of this fact, it might have been clearer to call
this the invocation context, but we were never consulted about the name.

 We’re about to look at how the four invocation mechanisms differ, and you’ll see
that one of the primary differences between them is how the value of this is deter-
mined for each type of invocation. And then we’ll take a long and hard look at func-
tion contexts again in section 3.4, so don’t worry if things don’t gel right away; we’ll be
discussing this at great length.

 Now let’s see how functions can be invoked.

3.3.2 Invocation as a function

“Invocation as a function?” Well, of course functions are invoked as functions. How silly
to think otherwise.

 But in reality, we say that a function is invoked “as a function” to distinguish it from
the other invocation mechanisms: methods, constructors, and apply/call. If a function
isn’t invoked as a method, as a constructor, or via apply() or call(), it’s simply invoked
“as a function.”

 This type of invocation occurs when a function is invoked using the () operator,
and the expression to which the () operator is applied doesn’t reference the function
as a property of an object. (In that case, we’d have a method invocation, but we’ll dis-
cuss that next.)

 Here are some simple examples:

function ninja(){};
ninja();

var samurai = function(){};
samurai();

When invoked in this manner, the function context is the global context—the window
object. We’re going to refrain from writing any tests to prove this at the moment, as
it’ll be more interesting to do so when we have something to compare it to.

 As it turns out, this concept of invoking “a function as a function” is really a special
case of the next invocation type we’ll talk about: invoking “as a method.” But because
of the implicitness of the window as the “owner” of the function, it’s generally thought
of as its own mechanism, and one that you’ve likely used again and again without
much thought about what’s really going on under the covers.

 So let’s see what this “method” stuff is all about.
Licensed to Maxeta Technologies <account@maxetatech.com>

50 CHAPTER 3 Functions are fundamental

Tests
invoc
“as a
and
that
cont
the w
objec
globa
Figur
show
this
passe

rty
3.3.3 Invocation as a method

When a function is assigned to a property of an object and the invocation occurs by
referencing the function using that property, then the function is invoked as a method
of that object. Here’s an example:

var o = {};
o.whatever = function(){};
o.whatever();

OK, so what? The function is called a “method” in this case, but what makes that inter-
esting or useful?

 Well, if you come from any object-oriented background, you’ll remember that the
object to which a method belongs is available within the body of the method as this.
The same thing happens here. When we invoke the function as the method of an
object, that object becomes the function context and is available within the function
via the this parameter. This is one of the primary means by which JavaScript allows
object-oriented code to be written. (Constructors are another, and we’ll be getting to
them in short order.)

 Contrast this with invocation “as a function,” in which the function is defined on
the window and called without the need to use a reference to window. Except for being
able to leave off the implicit window reference, it’s the same thing. The function
“belongs” to window, and window is set as the function context, in the same way that
object o is the function context in the above example. Even though these mechanisms
look different, they’re really the same.

 Let’s consider some test code in the next listing to illustrate the differences and
similarities between invocation as a function and invocation as a method.

<script type="text/javascript">

 function creep(){ return this; }

 assert(creep() === window,
 "Creeping in the window");

 var sneak = creep;

 assert(sneak() === window,
 "Sneaking in the window");

 var ninja1 = {
 skulk: creep
 };

 assert(ninja1.skulk() === ninja1,
 "The 1st ninja is skulking");

Listing 3.3 Illustrating the differences between function and method invocations

Defines a function that returns its function context. This will allow us
to examine the function context of a function from

outside of it, after it has been invoked. b

ation
 function”
verifies
 function
ext was
indow
t (the
l scope).
e 3.7
s that
test
s.

 c Creates a reference to the same
function in variable sneak.

 d

Invokes the function using the sneak variable. Even
though we’ve used a variable, the function is still invoked
as a function, and the function context is window.

 e

Creates an object in ninja1 and creates a skulk prope
that references the original creep() function. f

Invokes the function through skulk property, thus invoking
it as a method of ninja1. The function context is no
longer window but is ninja1. That’s object orientation!

 g
Licensed to Maxeta Technologies <account@maxetatech.com>

51Invocations
 var ninja2 = {
 skulk: creep
 };

 assert(ninja2.skulk() === ninja2,
 "The 2nd ninja is skulking");

</script>

Figure 3.7 shows that all our test assertions pass.
 In this test, we set up a single function named creep B that we’ll use throughout

the rest of the listing. The only thing that this function does is return its function con-
text so that we can see, from outside the function, what the function context for the
invocation is. (Otherwise, we’d have no way of knowing.)

 When we call the function by its name, this is a case of invoking the function “as a
function,” so we’d expect that the function context would be the global context—in
other words, the window. We assert that this is so c, and as we see in figure 3.7, this
assertion passes. So far, so good.

 Then we create a reference to the function in a variable named sneak d. Note that
this doesn’t create a second instance of the function; it merely creates a reference to
the same function. You know, first-class object and all.

 When we invoke the function via the variable—something we can do because the
function invocation operator can be applied to any expression that evaluates to a
function—we’d once again be invoking the function as a function. As such, we’d once
again expect that the function context would be the window e, and it is.

 Next, we get a bit trickier and define an object in variable ninja1 with a property
named skulk that receives a reference to the creep() function f. By doing so, we say
that we’ve created a method named skulk on the object. We don’t say that creep() has
become a method of ninja1; it hasn’t. We’ve already seen that creep() is its own indepen-
dent function that can be invoked in numerous ways.

 According to what we stated earlier, when we invoke the function via a method ref-
erence, we expect the function context to be the method’s object (in this case, ninja1)
and we assert as much g. Again figure 3.7 shows us that this is borne out. We’re on
a roll!

Creates another object, ninja2, that also has
a skulk property referencing creep(). h

Invokes the function as a method of ninja2,
and behold, the function context is ninja2.

Figure 3.7 A single function, invoked
in various ways, can serve as either a
“normal” function or a method.
Licensed to Maxeta Technologies <account@maxetatech.com>

52 CHAPTER 3 Functions are fundamental
 This particular ability is crucial to writing JavaScript in an object-oriented manner.
It means that we can, within any method, use this to reference the method’s owning
object—a fundamental concept in object-oriented programming.

 To drive that point home, we continue our testing by creating yet another object,
ninja2, also with a property named skulk that references the creep() function h.
Upon invoking this method through its object, we correctly assert that its function
context is ninja2.

 Note that even though the same function is used throughout all these examples,
the function context for each invocation of the function changes depending upon
how the function is invoked, rather than on how it was declared.

 For example, the exact same function instance is shared by both ninja1 and ninja2,
yet when it’s executed, the function has access to, and can perform operations upon,
the object through which the method was invoked. This means that we don’t need to
create separate copies of a function to perform the exact same processing on different
objects—this is a tenet of object-oriented programming.

 This is a powerful capability, yet the manner in which we used it in this example
has limitations. Foremost, when we created the two ninja objects, we were able to
share the same function to be used as a method in each, but we had to use a bit of
repeated code to set up the separate objects and their skulk methods.

 But that’s nothing to despair over—JavaScript provides mechanisms to make creat-
ing objects from a single pattern much easier than in this example. We’ll be exploring
those capabilities in depth in chapter 6. But for now, let’s consider a part of that mech-
anism that relates to function invocations: the constructor.

3.3.4 Invocation as a constructor

There’s nothing special about a function that’s going to be used as a constructor; con-
structor functions are declared just like any other functions. The difference is in how
the function is invoked.

 To invoke the function as a constructor, we precede the function invocation with the
new keyword.

 For example, recall the creep() function from the previous section:

function creep(){ return this; }

If we want to invoke the creep() function as a constructor, we’d write this:

new creep();

But even though we can invoke creep() as a constructor, that function isn’t particularly
well suited for use as a constructor. Let’s find out why by discussing what makes con-
structors special.

THE SUPERPOWERS OF CONSTRUCTORS

Invoking a function as a constructor is a powerful feature of JavaScript, because when
a constructor is invoked, the following special actions take place:
Licensed to Maxeta Technologies <account@maxetatech.com>

53Invocations

ally.
■ A new empty object is created.
■ This object is passed to the constructor as the this parameter, and thus

becomes the constructor’s function context.
■ In the absence of any explicit return value, the new object is returned as the

constructor’s value.

This latter point is why creep() makes for a lousy constructor. The purpose of a con-
structor is to cause a new object to be created, to set it up, and to return it as the
constructor value. Anything that interferes with that intent isn’t appropriate for func-
tions intended for use as constructors.

 Let’s consider a more appropriate function in the following listing—one that will
set up the skulking ninjas of listing 3.3 in a more succinct fashion.

<script type="text/javascript">

 function Ninja() {
 this.skulk = function() { return this; };
 }

 var ninja1 = new Ninja();
 var ninja2 = new Ninja();

 assert(ninja1.skulk() === ninja1,
 "The 1st ninja is skulking");
 assert(ninja2.skulk() === ninja2,
 "The 2nd ninja is skulking");

</script>

The results of this test are shown in figure 3.8.
 In this example, we create a function named Ninja() B that we intend to use to

construct, well, ninjas. When invoked with the new keyword, an empty object instance
will be created and passed to the function as this. The constructor creates a property
named skulk on this object, which is assigned a function, making that property a
method of the newly created object.

 The method performs the same operation as creep() in the previous sections,
returning the function context so that we can test it externally.

Listing 3.4 Using a constructor to set up common objects

Defines a constructor that creates a skulk
property on whatever object is the function
context. The method once again returns the
function context so that we can test it extern

 b

Creates two objects by invoking the constructor with new.
The newly created objects are referenced by ninja1 and ninja2. c

Tests the method of the constructed
objects. Each should return its own
constructed object.

 d

Figure 3.8 Constructors let us
create multiple objects following the
same pattern with a minimum of fuss
and bother.
Licensed to Maxeta Technologies <account@maxetatech.com>

54 CHAPTER 3 Functions are fundamental
 With the constructor defined, we create two new Ninja objects by invoking the con-
structor twice c. Note that the returned values from the invocations are stored in
variables that become references to the newly created Ninjas.

 Then we run the same tests as in listing 3.3 to ensure that each invocation of the
method operates upon the expected object d.

 Functions intended for use as constructors are generally coded differently from
other functions. Let’s see how.

CODING CONSIDERATIONS FOR CONSTRUCTORS

The intent of constructors is to initialize the new object that will be created by the
function invocation to initial conditions. And while such functions can be called as
“normal” functions, or even assigned to object properties in order to be invoked
as methods, they’re generally not very useful as such.

 For example, it’d be perfectly valid to call the Ninja() function as follows:

var whatever = Ninja();

But the effect would be for the skulk property to be created on window, and for window
to be returned and stored in whatever; that’s not a particularly useful operation.

 Because constructors are generally coded and used in a manner that’s different
from other functions, and they generally aren’t all that useful unless invoked as con-
structors, a naming convention has arisen to distinguish constructors from run-of-the-
mill functions and methods. If you’ve been paying attention, you may have already
noticed it.

 Functions and methods are generally named starting with a verb that describes
what they do (skulk(), creep(), sneak(), doSomethingWonderful(), and so on) and start
with a lowercase letter. Constructors, on the other hand, are usually named as a noun
that describes the object that’s being constructed and start with an uppercase charac-
ter; Ninja(), Samurai(), Ronin(), KungFuPanda(), and so on.

 It’s pretty easy to see how a constructor makes it much easier to create multiple
objects that conform to the same pattern without having to repeat the same code
over and over again. The common code is written once, as the body of the construc-
tor. In chapter 6, we’ll see much more about using constructors and about the other
object-oriented mechanisms that JavaScript provides that make it even easier to set
up object patterns.

 But we’re not done with function invocations yet. There’s still another way that
JavaScript lets us invoke functions that gives us a great deal of control over the invoca-
tion details.

3.3.5 Invocation with the apply() and call() methods
So far, we’ve seen that one of the major differences between the types of function
invocation is what object ends up as the function context referenced by the implicit
this parameter that is passed to the executing function. For methods, it’s the method’s
owning object; for top-level functions, it’s always window (in other words, a method of
window); for constructors, it’s a newly created object instance.
Licensed to Maxeta Technologies <account@maxetatech.com>

55Invocations
 But what if we wanted to make it whatever we wanted? What if we wanted to set it
explicitly? What if ... well, why would we want to do such a thing?

 To get a glimpse of why we’d care about this ability, we’ll look a bit ahead and con-
sider that when an event handler is called, the function context is set to the bound object
of the event. We’ll examine event handling in detail in chapter 13, but for now just
assume that the bound object is the object upon which the event handler is established.

 That’s usually exactly what we want, but not always. For example, in the case of
a method, we might want to force the function context to be the owning object of the
method and not the object to which the event is bound. We’ll see this scenario in
chapter 13, but for now the question is, can we do that?

 Well, yes we can.

USING THE APPLY() AND CALL() METHODS

JavaScript provides a means for us to invoke a function and to explicitly specify any
object we want as the function context. We do this through the use of one of two
methods that exist for every function: apply() and call().

 Yes, we said methods of functions. As first-class objects (created, by the way, by the
Function() constructor), functions can have properties, including methods, just like
any other object type.

 To invoke a function using its apply() method, we pass two parameters to apply():
the object to be used as the function context, and an array of values to be used as the
invocation arguments. The call() method is used in a similar manner, except that
the arguments are passed directly in the argument list rather than as an array.

 The following listing shows both of these methods in action.

<script type="text/javascript">

 function juggle() {
 var result = 0;
 for (var n = 0; n < arguments.length; n++) {
 result += arguments[n];
 }
 this.result = result;
 }

 var ninja1 = {};
 var ninja2 = {};

 juggle.apply(ninja1,[1,2,3,4]);

 juggle.call(ninja2,5,6,7,8);

 assert(ninja1.result === 10,"juggled via apply");
 assert(ninja2.result === 26,"juggled via call");

</script>

The results are shown in figure 3.9.
 In this example, we set up a function named juggle() B, in which we define jug-

gling as adding up all the arguments c and storing them as a property named result

Listing 3.5 Using the apply() and call() methods to supply the function context

Defines the
function

 b

Sums up
arguments c

Stores result
on context

 d

Sets up test
subjects e

Applies
function

 f

Calls function g

Tests expected
results h
Licensed to Maxeta Technologies <account@maxetatech.com>

56 CHAPTER 3 Functions are fundamental
on the function context d. That may be a rather lame definition of juggling, but it
will allow us to determine whether arguments were passed to the function correctly,
and which object ended up as the function context.

 We then set up two objects that we’ll use as function contexts e, passing the first to
the function’s apply() method, along with an array of arguments f, and passing the sec-
ond to the function’s call() method g, along with a number of other arguments.

 Then we test h!
 First, we check that ninja1, which was passed via apply(), received a result property

that’s the result of adding up all the argument values. Then we do the same for ninja2,
which was passed via call().

 The results in figure 3.9 show that the tests passed, meaning that we were successfully
able to specify arbitrary objects to serve as function contexts for function invocations.

 This can come in handy whenever it would be expedient to usurp what would nor-
mally be the function context with an object of our own choosing—something that
can be particularly useful when invoking callback functions.

FORCING THE FUNCTION CONTEXT IN CALLBACKS

Let’s consider a concrete example of forcing the function context to be an object of
our own choosing. Let’s take a simple function that will perform an operation on
every entry of an array.

 In imperative programming, it’s common to pass the array to a method and use a
for loop to iterate over every entry, performing the operation on each entry:

function(collection) {
 for (var n = 0; n < collection.length; n++) {
 /* do something to collection[n] */
 }
}

In contrast, the functional approach would be to create a function that operates on a
single element and passes each entry to that function:

function(item){
 /* do something to item */
}

Figure 3.9 The apply() and
call() methods let us set the
function context to any object of
our choosing.
Licensed to Maxeta Technologies <account@maxetatech.com>

57Invocations
The difference lies in thinking at a level where functions are the building blocks of
the program rather than imperative statements.

 You might think that it’s all rather moot, and that all we’re doing is moving the for
loop out one level, but we’re not done massaging this example yet.

 In order to facilitate a more functional style, quite a few of the popular JavaScript
libraries provide a “for-each” function that invokes a callback on each element within
an array. This is often more succinct, and this style is preferred over the traditional for
statement by those familiar with functional programming. Its organizational benefits
will become even more evident (cough, code reuse, cough) once we’ve covered closures
in chapter 5. Such an iteration function could simply pass the “current” element to the
callback as a parameter, but most make the current element the function context of
the callback.

NOTE A forEach() method has been defined for Array instances in JavaScript
1.6 and already appears in many modern browsers.

Let’s build our own (simplified) version of such a function in the next listing.

<script type="text/javascript">

 function forEach(list,callback) {
 for (var n = 0; n < list.length; n++) {
 callback.call(list[n],n);
 }
 }

 var weapons = ['shuriken','katana','nunchucks'];

 forEach(
 weapons,
 function(index){
 assert(this == weapons [index],
 "Got the expected value of " + weapons [index]);
 }
);

</script>

Our iteration function sports a simple signature that expects the array of objects to be
iterated over as the first argument and a callback function as the second B. The func-
tion iterates over the array entries, invoking the callback function c for each entry.

 We use the call() method of the callback function, passing the current iteration
entry as the first parameter and the loop index as the second. This should cause the
current entry to become the function context and the index to be passed as the single
parameter to the callback.

 Now to test that!
 We set up a simple array d and then call the forEach() function, passing the test

array and a callback within which we test that the expected entry is set as the function

Listing 3.6 Building a for-each function to demonstrate setting a function context

Defines the
for-each function

 b

Invokes the callback c

Sets up the
test subject d

Tests the
function e
Licensed to Maxeta Technologies <account@maxetatech.com>

58 CHAPTER 3 Functions are fundamental
context for each invocation of the callback e. Figure 3.10 shows that our function
works splendidly.

 In a production-ready implementation of such a function, there’d be a lot more
work to do. For example, what if the first argument isn’t an array? What if the second
isn’t a function? How would you allow the page author to terminate the loop at any
point? As an exercise, you can augment the function to handle these situations.

 Another exercise you could task yourself with is to enhance the function so that
the page author can also pass an arbitrary number of arguments to the callback in
addition to the iteration index.

 But given that apply() and call() do pretty much the same thing, how do we
decide which to use?

 The high-level answer is the same answer as for many such questions: we’d use
whichever one improves code clarity. A more practical answer would be to use the one
that best matches the arguments we have handy. If we have a bunch of unrelated val-
ues in variables or specified as literals, call() lets us list them directly in its argument
list. But if we already have the argument values in an array, or if it’s convenient to col-
lect them as such, apply() could be the better choice.

3.4 Summary
In this chapter we took a look at various fascinating aspects of how functions work in
JavaScript. While their use is completely ubiquitous, an understanding of their inner
workings is essential to writing high-quality JavaScript code.

 Specifically, within this chapter, we learned:

■ Writing sophisticated code hinges upon learning JavaScript as a functional
language.

■ Functions are first-class objects that are treated just like any other objects within
JavaScript. Just like any other object type, they can be:
– Created via literals
– Assigned to variables or properties
– Passed as parameters
– Returned as function results
– Possess properties and methods

Figure 3.10 The test results show that
we have the ability to make any object we
please the function context of a callback
invocation.
Licensed to Maxeta Technologies <account@maxetatech.com>

59Summary
■ Each object has a “super power” that distinguishes it from the rest; for functions
it’s the ability to be invoked.

■ Functions are created via literals, for which a name is optional.
■ The browser can invoke functions during the lifetime of a page by invoking

them as event handlers of various types.
■ The scope of declaration within a function differs from that of most other lan-

guages. Specifically:
– Variables within a function are in scope from their point of declaration to

the end of the function, spanning block boundaries.
– Inner named functions are available anywhere within the enclosing function

(hoisted), even as forward references.
■ The parameter list of a function and its actual argument list can be of differ-

ent lengths:
– Unassigned parameters evaluate as undefined.
– Extra arguments are simply not bound to parameter names.

■ Each function invocation is passed two implicit parameters:
– arguments, a collection of the actual passed arguments
– this, a reference to the object serving as the function context

■ Functions can be invoked in various ways, and the invocation mechanism deter-
mines the function context value:
– When invoked as a simple function, the context is the global object (window).
– When invoked as a method, the context is the object owning the method.
– When invoked as a constructor, the context is a newly allocated object.
– When invoked via the apply() or call() methods of the function, the context

can be whatever the heck we want.

In all, we made a thorough examination of the fundamentals of function mechanics.
In the next chapter, we’ll see how we can take this functional knowledge and put it
into use.
Licensed to Maxeta Technologies <account@maxetatech.com>

Licensed to Maxeta Technologies <account@maxetatech.com>

Wielding functions
In the previous chapter, we focused on how JavaScript treats functions as first-class
objects, and how that enables a functional programming style. In this chapter, we’ll
expand on how to use those functions to solve various problems that we might
come across when authoring web applications.

 The examples in this chapter were purposefully chosen to expose secrets that
will help you to truly understand JavaScript functions. Many are simple in nature,
but they expose important concepts that will be broadly applicable to the dilemmas
we’re bound to run into in future coding projects.

 Without further ado, let’s take the functional JavaScript knowledge that we now
possess in our two hands and wield it like the mighty weapon that it is.

This chapter covers
■ Why anonymous functions are so important
■ The ways that functions can be referenced for

invocation, including recursively
■ Storing references to functions
■ Using the function context to get our way
■ Dealing with variable-length argument lists
■ Determining whether an object is a function
61

Licensed to Maxeta Technologies <account@maxetatech.com>

62 CHAPTER 4 Wielding functions
4.1 Anonymous functions
You may or may not have been familiar with anonymous functions prior to their introduc-
tion in the previous chapter, but they’re a crucial concept we all need to be familiar with if
we’re striving for JavaScript ninja-hood. They’re an important and logical feature for a
language that takes a great deal of inspiration from functional languages such as Scheme.

 Anonymous functions are typically used in cases where we wish to create a function
for later use, such as storing it in a variable, establishing it as a method of an object, or
using it as a callback (for example, as a timeout or event handler). In all of these situ-
ations, the function doesn’t need to have a name for later reference. We’ll see plenty
such examples throughout the rest of this chapter and book, so don’t panic if that still
seems a bit strange at the moment.

 If you’re coming from a background of strongly typed and object-oriented lan-
guages, you may think of functions and methods as things that are rigidly defined
prior to their use, that are always available, and that are always named for referenc-
ing—generally, as something very concrete and enduring. But we’ll find that in func-
tional languages, including JavaScript, functions are much more ethereal; they’re
frequently defined as needed, and discarded just as quickly.

 The following listing shows some common examples of anonymous function
declarations.

<script type="text/javascript">

 window.onload =
 function(){ assert(true, 'power!'); };

 var ninja = {
 shout: function(){
 assert(true,"Ninja");
 }
 };

 ninja.shout();

 setTimeout(
 function(){ assert(true,'Forever!'); },
 500);

</script>

In listing 4.1, we do a couple of typical things.
 First, we establish a function as a handler for the load event B. We’re never going

to call this function directly; we’re going to let the event-handling mechanism do it for
us. We could have done the same thing like this:

function bootMeUp(){ assert(true, 'power!'); };
window.onload = bootMeUp;

But why bother to create the separate top-level function with a name when it’s not
really needed?

Listing 4.1 Common examples of using anonymous functions

Establishes an anonymous function as event
handler. There’s no need to create a named
function only to reference it in this location.

 b

Creates a function to be used as a method for ninja.
We’ll be using the property named shout to invoke the
function, so it doesn’t need its own name.

 c

Passes a function to the setTimeout()
function as a callback to be invoked when
the timer expires. Again, why bother to
give it an unneeded name?

 d
Licensed to Maxeta Technologies <account@maxetatech.com>

63Anonymous functions
Next, we declare an anonymous function as a property of an object c, which we know
from the previous chapter makes the function a method of the object. We then invoke
the method using the property reference.

 Another interesting use of an anonymous function, and one that should look
familiar from the previous chapter, is its use as a callback supplied to another function
call. In this example, we supply an anonymous function as an argument to the set-
Timeout() method (of window) d, which is invoked after half a second has elapsed.

 The results (after letting things run for a second or two) can be seen in figure 4.1.
 Note how, in all of these cases, the functions didn’t need to have a name in order

to be used after their declarations. Also note our use, once again, of the assert() func-
tion with a test condition of true as a lazy man’s means of emitting output. Hey, we
wrote the code, why not use it?

NOTE Some might think that by assigning an anonymous function to a prop-
erty named shout that we give the function a name, but that’s not the correct
way of thinking about it. The shout name is the name of the property, not of the
function itself. This can be proven by examining the name property of the
function. Review the results of listing 3.1 in figure 3.4 (in chapter 3) to see
that anonymous functions don’t possess names in the same manner that
named functions do.

We’re going to see anonymous functions a lot in the rest of this book’s code because
prowess with JavaScript relies upon using it as a functional language. As such, we’re
going to use functional programming styles heavily in all the code that follows. Func-
tional programming concentrates on small, usually side-effect-free, functions as the
basic building blocks of application code. As we go along, we’re going to see that this
style is essential to the types of things we need to do in web applications.

 So in addition to not polluting the global namespace with unnecessary function
names, we’re going to create lots of little functions that get passed around instead of
large functions full of imperative statements.

 Functional programming with anonymous functions will solve many of the chal-
lenges that we’ll face when developing JavaScript applications. In the rest of this
chapter, we’ll expand on their use, and look at various ways in which they can be
employed. We’ll start with recursion.

Figure 4.1 Anonymous functions can
be called at various times despite not
being named.
Licensed to Maxeta Technologies <account@maxetatech.com>

64 CHAPTER 4 Wielding functions
4.2 Recursion
Recursion is a concept that you’ve probably run into before. Whenever a function calls
itself, or calls a function that in turn calls the original function anywhere in the call
tree, recursion occurs.

 Recursion is a really useful technique for applications of all types. You might be
thinking that recursion is mostly useful in applications that do a lot of math, and that’s
true—many mathematical formulae are recursive in nature. But it’s also useful for
doing things like walking trees, and that’s a construct that we’re likely to see popping
up within web applications. We can also use recursion to develop an even deeper
understanding of how functions work within JavaScript.

 Let’s start by using recursion in its simplest form.

4.2.1 Recursion in named functions

There are any number of common examples for recursive functions. One is the test
for a palindrome—this is perhaps the “Hello world!” for recursive techniques.

 The non-recursive definition of a palindrome is “a phrase that reads the same in
either direction,” and we can use that to implement a function that creates a reversed
copy of the string and compares it to the original. But copying the string isn’t an ele-
gant solution on a number of levels, not the least of which is the need to allocate and
create a new string.

 By using a more mathematical definition of a palindrome, we can come up with a
more elegant solution. Here’s the definition:

1 A single or zero-character string is a palindrome.
2 Any other string is a palindrome if the first and last characters are the same,

and the string that remains, excepting those characters, is a palindrome.

Our implementation using this definition follows:

function isPalindrome(text) {
 if (text.length <= 1) return true;
 if (text.charAt(0) != text.charAt(text.length - 1)) return false;
 return isPalindrome(text.substr(1,text.length - 2));
}

Note that the new definition, and our implementation of it, is recursive, because it uses
the definition of a palindrome to determine if a string is a palindrome. The imple-
mentation is straightforward, and we make a recursive call, using the function’s name,
in the last line of the function.

PONDER THIS Our function doesn’t handle text parameter values of null or
undefined. How would you handle this? In fact, what would you return in
such cases? Are non-existent strings palindromic?

Things get a bit more interesting, and a tad less clear, when we begin dealing with
anonymous functions, but we’ll get to that in a bit. Let’s establish a really simple exam-
ple of recursion that we’ll build upon as we go along.
Licensed to Maxeta Technologies <account@maxetatech.com>

65Recursion
 Ninjas frequently need to signal each other in code, often employing natural
sounds as a cover. We’re going to give our ninja the ability to chirp like a cricket, with
the number of chirps encoding different messages. We’ll start with an implementation
using recursion via the function’s name, as shown in the following listing

<script type="text/javascript">

 function chirp(n) {
 return n > 1 ? chirp(n - 1) + "-chirp" : "chirp";
 }

 assert(chirp(3) == "chirp-chirp-chirp",
 "Calling the named function comes naturally.");

</script>

In this listing, we declare a function named chirp() that employs recursion by calling
itself by name B, just as we did in the palindrome example. Our test verifies that the
function works as intended c.

It’s pretty clear how all this works with a named function, but what if we were to use
anonymous functions?

4.2.2 Recursion with methods

In the previous section, we said that we were going to give our ninja the ability to
chirp, but we really didn’t. What we created was a standalone function for chirping.

 Let’s fix that by declaring the recursive function as a method of a ninja object. This
complicates things a bit, because the recursive function becomes an anonymous func-
tion assigned to an object’s property, as you can see in the next listing.

<script type="text/javascript">

 var ninja = {
 chirp: function(n) {

Listing 4.2 Chirping using a named function

About recursion
The function in listing 4.2 satisfies two criteria for recursion: a reference to self, and
convergence towards termination.

The function clearly calls itself, so the first criterion is satisfied. And because the
value of parameter n decreases with each iteration, it will sooner or later reach a
value of one or less and stop the recursion, satisfying the second criterion.

Note that a “recursive” function that doesn’t converge toward termination is better
known as an infinite loop!

Listing 4.3 Method recursion within an object

Declares a recursive chirping
function that calls itself by
name until it determines
that it’s done.

 b

Asserts that a ninja can
chirp as planned.

 c

Declares a recursive chirp function as a property of the
ninja object. We now need to call the method from within
itself using the reference to the object’s method.

 b
Licensed to Maxeta Technologies <account@maxetatech.com>

66 CHAPTER 4 Wielding functions
 return n > 1 ? ninja.chirp(n - 1) + "-chirp" : "chirp";
 }
 };

 assert(ninja.chirp(3) == "chirp-chirp-chirp",
 "An object property isn't too confusing, either.");

</script>

In this test, we defined our recursive function as an anonymous function referenced
by the chirp property of the ninja object B. Within the function, we invoke the func-
tion recursively via a reference to the object’s property: ninja.chirp(). We can’t refer-
ence it directly by its name as we did in listing 4.2, because it doesn’t have one.

 The relationship is shown in figure 4.2.

That’s all fine as it stands, but because we’re relying upon an indirect reference to the
function—namely, the chirp property of ninja—we could be standing on thin ice. And
that’s not a wise move for a ninja of any standing. Let’s look at why we’re heading for
a fall.

4.2.3 The pilfered reference problem

The example in listing 4.3 relied on the fact that we had a reference to the function to
be called recursively in the property of an object. But unlike a function’s actual name,
such references may be transient, and relying upon them can trip us up in confound-
ing ways.

 Let’s modify the previous example by adding a new object, let’s say samurai, that
also references the anonymous recursive function in the ninja object. Consider the
next listing.

<script type="text/javascript">

 var ninja = {
 chirp: function(n) {
 return n > 1 ? ninja.chirp(n - 1) + "-chirp" : "chirp";
 }
 };

 var samurai = { chirp: ninja.chirp };

Listing 4.4 Recursion using a missing function reference

object

chirp Anonymous
function

var ninja

Function references self

through ninja.chirp
Figure 4.2 Our function, now a
method, references itself through
the object’s chirp property.

Creates a chirp() method on
samurai by referencing the

existing method of same
name on ninja. Why write the
code twice when we already

have an implementation?

 b
Licensed to Maxeta Technologies <account@maxetatech.com>

67Recursion
 ninja = {};

 try {
 assert(samurai.chirp(3) == "chirp-chirp-chirp",
 "Is this going to work?");
 }
 catch(e){
 assert(false,
 "Uh, this isn't good! Where'd ninja.chirp go?");
 }

</script>

We can see how things can quickly break down in this scenario. We copied a reference
to the chirping function into the samurai object B, so now both ninja.chirp and
samurai.chirp reference the same anonymous function. A diagram of the relationships
created is shown in figure 4.3. Part A (which you’ll recognize from figure 4.2) shows
the constructs after the ninja object is created, and part B shows them after the
samurai object is created.

 At that point, there really isn’t any problem—it’s not at all uncommon for functions
to be referenced from multiple places. The potential booby trap is that the function is
recursive and uses the ninja.chirp reference to call itself, regardless of whether the
function is invoked as a method of ninja or of samurai.

 So what would happen if ninja were to go away, leaving samurai holding the bag? To
test this, we redefine ninja with an empty object c, depicted in part C of figure 4.3. The
anonymous function still exists and can be referenced through the samurai.chirp
property, but the ninja.chirp property no longer exists. And because the function
recursively calls itself through that now-defunct reference, things go badly awry d
when the function is invoked.

 We can rectify this problem by fixing the initially sloppy definition of the recursive
function. Rather than explicitly referencing ninja in the anonymous function, we
should have used the function context (this) as follows:

var ninja = {
 chirp: function(n) {
 return n > 1 ? this.chirp(n - 1) + "-chirp" : "chirp";
 }
};

Remember that when a function is invoked as a method, the function context refers
to the object through which the method was invoked. When invoked as ninja
.chirp(), this refers to ninja, but when invoked by samurai.chirp(), this refers to
samurai and all is well.

 Using the function context (this) makes our chirp() method much more robust,
and it’s the way that the method should have been declared in the first place. So,
problem solved.

 But...

Redefines ninja such that it has no properties.
This means that its chirp property goes away! c

Tests if things
still work. Hint:
they don’t!

 d
Licensed to Maxeta Technologies <account@maxetatech.com>

68 CHAPTER 4 Wielding functions
4.2.4 Inline named functions

The solution we came up with in the previous section works perfectly well when func-
tions are used as methods of an object. In fact, the technique of using the function
context, regardless of whether the method is recursive or not, to reference the “own-
ing object” of the method is one that’s very common and accepted. We’ll be seeing a
lot more about that in chapter 6.

 But now we have another problem. The solution relied upon the fact that the func-
tion would be a method named chirp() of any object within which the method is

Figure 4.3 The two objects have a reference to the same function, but the function
refers to itself through only one of the objects. Thin ice!
Licensed to Maxeta Technologies <account@maxetatech.com>

69Recursion
defined. What if the properties don’t have the same name? Or what if one of the refer-
ences to the function isn’t even an object property? Our solution only works in the
specific case where the function is used as a method, and where the property name of
the method is identical in all its uses. Can we develop a more general technique?

 Let’s consider another approach: what if we give the anonymous function a name?
 At first, this may seem completely crazy; if we’re going to use a function as a

method, why would we also give it its own name? Well, remember that when declaring
a function literal, the name of the function is optional, and we’ve been leaving it off
for all but top-level functions. But as it turns out, there’s nothing wrong with giving
any function literal a name, even those that are declared as callbacks or methods.

 No longer anonymous, these functions are better called inline functions, rather than
“anonymous named functions” to avoid the oxymoron.

 Observe the use of this technique in the following listing.

<script type="text/javascript">

 var ninja = {
 chirp: function signal(n) {
 return n > 1 ? signal(n - 1) + "-chirp" : "chirp";
 }
 };

 assert(ninja.chirp(3) == "chirp-chirp-chirp",
 "Works as we would expect it to!");

 var samurai = { chirp: ninja.chirp };

 ninja = {};

 assert(samurai.chirp(3) == "chirp-chirp-chirp",
 "The method correctly calls itself.");

</script>

Here we assign the name signal to the inline function B and use that name for the
recursive reference within the function body, and then we test that calling as a method
of ninja still works c. As before, we copy the reference to the function to samurai
.chirp d and wipe out the original ninja object e.

 Upon testing calling the function as a method of samurai f, we find that every-
thing still works, because wiping out the chirp property of ninja had no effect on the
name we gave to the inline function and used to perform the recursive call.

 This ability to name an inline function extends even further. It can even be used
within normal variable assignments, with some seemingly bizarre results, as shown in
the following listing.

<script type="text/javascript">

 var ninja = function myNinja(){

Listing 4.5 Using an inline function in a recursive fashion

Listing 4.6 Verifying the identity of an inline function

Declares a named
inline function. b

Tests that it works
just as expected. c

Creates a
new object. d Wipes out the ninja

object just like in
the previous example.

 e

Tests that it still
works. And it does! f

Declares a named inline function
and assigns it to variable. b
Licensed to Maxeta Technologies <account@maxetatech.com>

70 CHAPTER 4 Wielding functions

 assert(ninja == myNinja,
 "This function is named two things at once!");
 };

 ninja();

 assert(typeof myNinja == "undefined",
 "But myNinja isn't defined outside of the function.");

</script>

This listing brings up the most important point regarding inline functions: even
though inline functions can be named, those names are only visible within the func-
tions themselves. Remember the scoping rules we talked about back in chapter 3?
Inline function names act somewhat like variable names, and their scope is limited to
the function within which they’re declared.

NOTE This is why top-level functions are created as methods on window. With-
out the window properties, we’d have no way to reference the functions.

We declare an inline function with the name myNinja B and internally test to be sure
that the name, and the reference to which the function is assigned, refer to the same
thing c. Calling the function invokes this test d.

 Then, we test that the function name isn’t externally visible e. And, as expected,
when we run the code, the test passes.

 So while giving inline functions a name may provide a means to clearly allow recur-
sive references within those functions (arguably, this approach provides more clarity
than using this), it has limited utility elsewhere.

 Are there other techniques we can employ?

4.2.5 The callee property

Let’s look at still another way to approach recursion that introduces yet another con-
cept concerning functions: the callee property of the arguments parameter.

WARNING The callee property is on the chopping block for an upcoming ver-
sion of JavaScript, and the ECMAScript 5 standard forbids its use in “strict”
mode. It’s OK to use this property in current browsers, but its use isn’t future-
proof, and we’d likely not want to use callee in new code. Nevertheless, we
present it here as you may come across it in existing code.

Consider the following code.

<script type="text/javascript">

 var ninja = {
 chirp: function(n) {
 return n > 1 ? arguments.callee(n - 1) + "-chirp" : "chirp";

Listing 4.7 Using arguments.callee to reference the calling function

Tests that two names are equivalent
inside the inline function. c

Invokes the function to perform the internal test. d

Tests that the inline
function’s name isn’t
available outside the
inline function.

 e

References arguments.callee
property.
Licensed to Maxeta Technologies <account@maxetatech.com>

71Fun with function as objects
 }
 };

 assert(ninja.chirp(3) == "chirp-chirp-chirp",
 "arguments.callee is the function itself.");
</script>

As we discovered in section 3.3, the arguments parameter is implicitly passed to every
function, and arguments has a property named callee that refers to the currently exe-
cuting function. This property can serve as a reliable way to always access the function
itself. Later on in this chapter, as well as in the following chapter (chapter 5, on clo-
sures), we’ll take a closer look at what can be done with this particular property.

 All together, these different techniques for referencing functions will be of great
benefit to us as we start to scale in complexity, providing us with various means to ref-
erence functions without resorting to hardcoded and fragile dependencies like vari-
able and property names.

 The next step in our functional journey is to understand how the object-oriented
nature of functions in JavaScript can help take our code to the next level.

4.3 Fun with function as objects
As we’ve consistently harped on throughout this chapter, functions in JavaScript
aren’t like functions in many other languages. JavaScript gives functions many capabil-
ities, not the least of which is their treatment as first-class objects.

 We’ve seen that functions can have properties, can have methods, can be assigned
to variables and properties, and generally enjoy all the abilities of plain vanilla objects,
but with an amazing superpower: they’re callable.

 In this section, we’ll examine some ways that we can exploit the similarities that
functions share with other object types. But to start with, let’s recap a few key concepts
that we’re going to take advantage of.

 Let’s start with assigning functions to variables:

var obj = {};
var fn = function(){};
assert(obj && fn, "Both the object and function exist.");

Just as we can assign an object to a variable, we can do so with a function. This also
applies to assigning functions to object properties in order to create methods.

NOTE One thing that’s important to remember is the semicolon after
function(){} definitions. It’s a good practice to have semicolons at the
end of all statements, and especially after variable assignments. Doing
so with anonymous functions is no exception. When compressing code,
properly placed semicolons will allow for greater flexibility in compres-
sion techniques.

Another capability that may have surprised you is that, just as with any other object, we
can attach properties to a function:

Tests that we can chirp
as much as we’d like!
Licensed to Maxeta Technologies <account@maxetatech.com>

72 CHAPTER 4 Wielding functions
var obj = {};
var fn = function(){};
obj.prop = "hitsuke (distraction)";
fn.prop = "tanuki (climbing)";

This aspect of functions can be used in a number of different ways throughout a
library or general on-page code, and this is especially true when it comes to topics like
event callback management. Let’s look at a couple of the more interesting things that
can be done with this capability; first we’ll look at storing functions in collections and
then at a technique known as “memoizing.”

4.3.1 Storing functions

There are times when we may want to store a collection of related but unique func-
tions, event callback management being the most obvious example (and one that
we’ll be examining in excruciating detail in chapter 13). When adding functions to
such a collection, a challenge we can face is determining which functions are actually
new to the collection and should be added, and which are already resident and
shouldn’t be added.

 An obvious, but naïve, technique would be to store all the functions in an array
and loop through the array checking for duplicate functions. Unfortunately, this per-
forms poorly, and as ninjas we want to make things work well, not merely work.

 We can make use of function properties to achieve this with an appropriate level of
sophistication, as shown in in the next listing.

<script type="text/javascript">

 var store = {
 nextId: 1,

 cache: {},

 add: function(fn) {
 if (!fn.id) {
 fn.id = store.nextId++;
 return !!(store.cache[fn.id] = fn);
 }
 }
 };

 function ninja(){}

 assert(store.add(ninja),
 "Function was safely added.");
 assert(!store.add(ninja),
 "But it was only added once.");

</script>

In this listing, we create an object assigned to variable store (we used a noun in this case),
in which we’ll store a unique set of functions. This object has two data properties: one

Listing 4.8 Storing a collection of unique functions

Keeps track of the next
available id to be assigned. b

Creates an object to serve as a
cache in which we’ll store functions. c

Adds functions to the cache,
but only if they’re unique. d

Tests that all
works as planned. e
Licensed to Maxeta Technologies <account@maxetatech.com>

73Fun with function as objects
that stores a next available id value B, and one within which we’ll cache the stored
functions c. Functions are added to this cache via the add() method d.

 Within add(), we first check to see if an id property has been added to the function,
and if so, we assume that the function has already been processed and we ignore it.
Otherwise, we assign an id property to the function (incrementing the nextId property
along the way) and add the function as a property of the cache, using the id value as
the property name.

 We then return the value true, which we compute the hard way by converting the
function to its Boolean equivalent, so that we can tell when the function was added
after a call to add().

TIP The !! construct is a simple way of turning any JavaScript expression into
its Boolean equivalent. For example: !!"he shot me down" === true and !!0 ===
false. In listing 4.8 we end up converting a function into its Boolean equiva-
lent, which will always be true. (Sure we could have hardcoded true, but then
we wouldn’t have had a chance to introduce !!).

Running the page in the browser shows that when our tests try to add the ninja() func-
tion twice e, the function is only added once, as shown in figure 4.4.

 Another useful trick that we can pull out of our sleeves using function properties is
giving a function the ability to modify itself. This technique could be used to remem-
ber previously computed values, saving time during future computations.

4.3.2 Self-memoizing functions

Memoization (no, that’s not a typo) is the process of building a function that’s capable of
remembering its previously computed values. This can markedly increase performance
by avoiding needless complex computations that have already been performed.

 We’ll take a look at this technique in the context of storing the answer to expensive
computations, and then we’ll look at a more real-world example of storing a list of
DOM elements that we’ve looked up.

MEMOIZING EXPENSIVE COMPUTATIONS

As a basic example, let’s look at a simplistic (and certainly not particularly efficient)
algorithm for computing prime numbers. This is just a simple example of a complex

Figure 4.4 By tacking a property onto a
function, we can keep track of it.
Licensed to Maxeta Technologies <account@maxetatech.com>

74 CHAPTER 4 Wielding functions
calculation, but this technique is readily applicable to other expensive computations,
such as deriving the MD5 hash for a string, that are too complex to present as exam-
ples here.

 From the outside, the function will appear to be just like any normal function, but
we’ll surreptitiously build in an “answer cache” in which the function will save the
answers to the computations it performs. Look over the following code.

<script type="text/javascript">

 function isPrime(value) {
 if (!isPrime.anwers) isPrime.answers = {};
 if (isPrime.answers[value] != null) {
 return isPrime.answers[value];
 }
 var prime = value != 1; // 1 can never be prime
 for (var i = 2; i < value; i++) {
 if (value % i == 0) {
 prime = false;
 break;
 }
 }
 return isPrime.answers[value] = prime;
 }

 assert(isPrime(5), "5 is prime!");
 assert(isPrime.answers[5], "The answer was cached!");

</script>

Within the isPrime() function, we start by checking to see if the answers property that
we’ll use as a cache has been created, and if not, we create it B. The creation of this
initially empty object will only occur on the first call to the function; after that, the
cache will exist.

 Then we check to see if the answer for the passed value has already been cached in
answers c. Within this cache, we’ll store the computed answer (true or false) using
the value as the property key. If we find a cached answer, we simply return it.

 If no cached value is found, we go ahead and perform the calculations needed to
determine whether the value is prime (which can be an expensive operation for larger
values) and store the result in the cache as we return it d.

 Some simple tests e show that the memoization is working!
 This approach has two major advantages:

■ The end user enjoys performance benefits for function calls asking for a previ-
ously computed value.

■ It happens completely seamlessly and behind the scenes; neither the end user
nor the page author need to perform any special requests or do any extra ini-
tialization in order to make it all work.

Listing 4.9 Memoizing previously computed values

Creates the cache b

Checks for
cached values c

Stores the
computed value d

Tests that it
all works e
Licensed to Maxeta Technologies <account@maxetatech.com>

75Fun with function as objects
But it’s not all roses and violins; there are disadvantages that may need to be weighed
against the advantages:

■ Any sort of caching will certainly sacrifice memory in favor of performance.
■ Purists may consider that caching is a concern that should not be mixed with

the business logic; a function or method should do one thing and do it well.
■ It’s difficult to load-test or measure the performance of an algorithm such as

this one.

Let’s take a look at another kindred example.

MEMOIZING DOM ELEMENTS

Querying for a set of DOM elements by tag name is a fairly common operation, and
one that may not be particularly performant. We can take advantage of our newfound
function memoization superpowers by building a cache within which we can store the
matched element sets. Consider this example:

function getElements(name) {
 if (!getElements.cache) getElements.cache = {};
 return getElements.cache[name] =
 getElements.cache[name] ||
 document.getElementsByTagName(name);
}

The memoization (caching) code is quite simple and doesn’t add that much extra
complexity to the overall querying process. But if we do some performance analysis
upon the function, we’ll find that this simple layer of caching yields us a 5x perfor-
mance increase, as shown in table 4.1. Not a bad superpower to have.

Even these simple examples demonstrate the usefulness of function properties: we
can store state and cache information in a single and encapsulated location, gaining
not only organizational advantages but performance benefits without external storage
or caching objects polluting the scope. We’ll be revisiting this concept in upcoming
chapters, as the utility of this technique is broadly applicable.

 The ability to possess properties, just like the other objects in JavaScript, isn’t the
only superpower that functions have. Much of a function’s power is related to its con-
text, and we’ll explore an example of that next.

Table 4.1 All times are in ms for 100,000 iterations in a copy of Chrome 17

Code version Average Minimum Maximum Runs

Noncached version 16.7 18 19 10

Cached version 3.2 3 4 10
Licensed to Maxeta Technologies <account@maxetatech.com>

76 CHAPTER 4 Wielding functions
4.3.3 Faking array methods

There are times that we may want to create an object that contains a collection of data.
If the collection was all that we were worried about, we could just use an array. But in
certain cases, there may be more state to store than just the collection itself—perhaps
we need to store some sort of metadata regarding the collected items.

 One option might be to create a new array every time you wish to create a new ver-
sion of such an object, and add the metadata properties and methods to it—remem-
ber, we can add properties and methods to an object as we please, including arrays.
Generally, however, this can be quite slow, not to mention tedious.

 Let’s examine the possibility of using a normal object and just giving it the func-
tionality that we desire. Methods that know how to deal with collections already exist
on the Array object (a constructor function); can we trick them into working on our
own objects?

 Turns out that we can, as shown in the next listing.

<body>

 <input id="first"/>
 <input id="second"/>

 <script type="text/javascript">

 var elems = {

 length: 0,

 add: function(elem){
 Array.prototype.push.call(this, elem);
 },

 gather: function(id){
 this.add(document.getElementById(id));
 }
 };

 elems.gather("first");
 assert(elems.length == 1 && elems[0].nodeType,
 "Verify that we have an element in our stash");

 elems.gather("second");
 assert(elems.length == 2 && elems[1].nodeType,
 "Verify the other insertion");

 </script>
</body>

In this example, we’re creating a “normal” object and instrumenting it to mimic some
of the behaviors of an array. First, we define a length property to record the number of
element that are stored B, just like an array. Then we define a method to add an ele-
ment to the end of our simulated array, calling this method simply add() c. Rather
than write our own code, we’ve decided to leverage a native method of JavaScript

Listing 4.10 Simulating array-like methods

Stores the count of elements. If we’re going to pretend
we’re an array, we’re going to need someplace to store
the number of items that we’re storing.

 b

Implements the method to add elements to
our collection. The prototype for Array
already has a method to do this, so why not
use it instead of reinventing the wheel?

 c

Implements a method named gather()
to find elements by their id values

and add them to our collection. d

Tests the
gather() and
add() methods.

 e
Licensed to Maxeta Technologies <account@maxetatech.com>

77Variable-length argument lists
arrays: Array.prototype.push. (Don’t worry about the prototype part of that reference—
we’ll be looking at that in chapter 6. For now, just think of it as a property where con-
structors stash their methods.)

 Normally, the Array.prototype.push() method would operate on its own array via its
function context. But here, we’re tricking the method to use our object as its context by
using the call() method and forcing our object to be the context of the push() method.
The push() method, which increments the length property (thinking that it’s the length
property of an array), adds a numbered property to the object referencing the passed
element. In a way, this behavior is almost subversive (how fitting for ninjas!), but it
exemplifies what we’re capable of doing with mutable object contexts.

 Our add() method expects an element reference to be passed for storage. While
there may be times that we have such a reference around, more often than not we
won’t, so we also define a convenience method, gather(), that looks up the element by
its id value and adds it to storage d.

 Finally, we run two tests that each add an item to the object via gather(), check that
the length was correctly adjusted, and check that elements were added at the appro-
priate points e.

 The borderline nefarious behavior we demonstrated in this section not only
reveals the power that malleable function contexts gives us, but also serves as an excel-
lent segue into discussing the complexities of dealing with function arguments.

4.4 Variable-length argument lists
JavaScript, as a whole, is very flexible in what it can do, and much of that flexibility
defines the language as we know it today. One of these flexible and powerful features
is the ability for functions to accept an arbitrary number of arguments. This flexibility
offers developers great control over how their functions, and therefore their applica-
tions, can be written.

 Let’s take a look at a few prime examples of how we can use flexible argument lists
to our advantage. We’ll see

■ How to supply multiple arguments to functions that can accept any number
of them

■ How to use variable-length argument lists to implement function overloading
■ How to understand and use the length property of argument lists

Because JavaScript has no function overloading (a capability of object-oriented lan-
guages to which you may be accustomed), the flexibility of the argument list is key to
gaining similar advantages that overloading gives us in other languages.

 Let’s start with using apply() to hand off a variable number of arguments.

4.4.1 Using apply() to supply variable arguments

With any language, there are often things we need to do that seem to have been myste-
riously overlooked by the developers of the language, and JavaScript is no exception.
Licensed to Maxeta Technologies <account@maxetatech.com>

78 CHAPTER 4 Wielding functions
One of these odd vacuums involves finding the smallest or the largest values con-
tained within an array. It seems like that would be done often enough to warrant
inclusion in JavaScript, but if we poke around, the closest thing we’ll find is a set of
methods on the Math object named min() and max().

 At first we might think that these methods are the answer to our problem, but on
examination, we’ll see that each of these methods expects a variable-length argument
list, and not an array. How silly not to have provided both.

 That means calls to Math.max(), for example, could look like this:

var biggest = Math.max(1,2);
var biggest = Math.max(1,2,3);
var biggest = Math.max(1,2,3,4);
var biggest = Math.max(1,2,3,4,5,6,7,8,9,10,2058);

When it comes to arrays, we can’t very well resort to something like this:

var biggest = Math.max(list[0],list[1],list[2]);

Unless we know exactly how big the array is, how would we know how many arguments
to pass? And even if we did know the array size, that’s far from a satisfactory solution.

 Before abandoning Math.max() and resorting to looping through the contents our-
selves to find the minimum and maximum values, let’s pull on our ninja hoods and
ponder whether there’s an easy and supported way to use an array as a variable-length
argument list.

 Eureka! The apply() method!
 You may recall, the call() and apply() methods exist as methods of all functions—

even of the built-in JavaScript functions (we saw this with our “fake array” example).
Let’s see how we can use that ability to our advantage in defining our array-inspecting
functions, as shown in the next listing.

<script type="text/javascript">
 function smallest(array){
 return Math.min.apply(Math, array);
 }

 function largest(array){
 return Math.max.apply(Math, array);
 }

 assert(smallest([0, 1, 2, 3]) == 0,
 "Located the smallest value.");
 assert(largest([0, 1, 2, 3]) == 3,
 "Located the largest value.");
</script>

In this code we define two functions: one to find the smallest value within an array B,
and one to find the largest value c. Notice how both functions use the apply()
method to supply the value in the passed arrays as variable-length argument lists to the
Math functions.

Listing 4.11 Generic min() and max() functions for arrays

Implements a function to
find the smallest value b

Implements a function to
find the largest value c

Tests the
implementations d
Licensed to Maxeta Technologies <account@maxetatech.com>

79Variable-length argument lists
 A call to smallest(), passing the array [0,1,2,3] (as we did in our tests d), results
in a call to Math.min() that’s functionally equivalent to

Math.min(0,1,2,3);

Also note that we specify the context as being the Math object. This isn’t necessary
(the min() and max() methods will continue to work regardless of what’s passed in
as the context), but there’s no reason not to be tidy in this situation.

 Now that we know how to use variable-length argument lists when calling functions,
let’s take a look at how we can declare our own functions to accept them.

4.4.2 Function overloading

Back in section 3.3, we introduced the built-in arguments parameter that’s implicitly
passed to all functions. We’re now ready to take a closer look at that parameter.

 All functions are implicitly passed this important parameter, which gives our func-
tions the power to handle any number of passed arguments. Even if we only define a
certain number of parameters, we’ll always be able to access all passed arguments
through the arguments parameter.

 Let’s take a quick look at an example of using this power to implement effective
function overloading.

DETECTING AND TRAVERSING ARGUMENTS

In other, more pure, object-oriented languages, method overloading is usually
effected by declaring distinct implementations of methods of the same name but with
differing parameter lists. That’s not how it’s done in JavaScript. In JavaScript, we
“overload” functions with a single implementation that modifies its behavior by
inspecting the number and nature of the passed arguments. Let’s see how that can
be done.

 In the following code, we’re going to merge the properties of multiple objects into
a single root object. This can be an essential utility for effecting inheritance (which
we’ll discuss more when we talk about object prototypes in chapter 6).

<script type="text/javascript">

 function merge(root){
 for (var i = 1; i < arguments.length; i++) {
 for (var key in arguments[i]) {
 root[key] = arguments[i][key];
 }
 }
 return root;
 }

 var merged = merge(
 {name: "Batou"},
 {city: "Niihama"});

Listing 4.12 Traversing variable-length argument lists

Implements the
merge() function b

Calls the implemented
function
Licensed to Maxeta Technologies <account@maxetatech.com>

80 CHAPTER 4 Wielding functions
 assert(merged.name == "Batou",
 "The original name is intact.");
 assert(merged.city == "Niihama",
 "And the city has been copied over.");
</script>

The first thing that you’ll notice about the implementation of the merge() function B is
that its signature only declares a single parameter: root. This doesn’t mean that we’re
limited to calling the function with a single parameter. Far from it! We can, in fact, call
merge() with any number of parameters, including none.

 There’s no proscription in JavaScript that enforces passing the same number of
arguments to a function as there are declared parameters in the function declaration.
Whether the function can successfully deal with those arguments (or lack of argu-
ments) is entirely up to the definition of the function itself, but JavaScript imposes no
rules in this regard. The fact that we declared the function with a single parameter,
root, means that only one of the possible passed arguments can be referenced by
name—the first one.

TIP To check whether an argument that corresponds to a named parameter
was passed, we can use the expression paramname === undefined, which will eval-
uate to true if there’s no corresponding argument.

So we can get at the first passed argument via root, but how do we access the rest of any
arguments that may have been passed? Why, with the arguments parameter, of course,
which references a collection of all of the passed arguments.

 Remember that what we’re trying to do is to merge the properties of any object
passed as the second through nth arguments into the object passed as root (the first
argument). So we iterate through the arguments in the list, starting at index 1 in
order to skip the first argument.

 During each iteration, in which the iteration item is an object passed to the func-
tion, we loop through the properties of that passed object and copy any located prop-
erties to the root object.

TIP If you haven’t seen a for-in statement before, it simply iterates through all
the properties of an object, setting the property name (key) as the iteration item.

As should be evident by now, the ability to access and traverse the arguments collection
is a powerful mechanism for creating complex and intelligent methods. We can use it
to inspect the arguments passed to any function in order to allow our function to flex-
ibly operate on the arguments, even when we don’t know in advance exactly what is
going to be passed.

 Libraries such as jQuery UI use function overloading extensively. Consider a
method to create and manage a UI widget such as a floating dialog box. The same
method, dialog(), is used to both create and to perform operations on the dialog box.
To create the dialog box, a call such as the following is made:

$("#myDialog").dialog({ caption: "This is a dialog" });

Tests that it did
the right things
Licensed to Maxeta Technologies <account@maxetatech.com>

81Variable-length argument lists
The exact same method is used to perform operations, such as opening the dialog box:

$("#myDialog").dialog("open");

What the dialog() method actually does is determined by an inspection of exactly
what is being passed to it.

 Let’s take a look at another example where the use of the arguments parameter isn’t
as clear-cut as in the example of listing 4.12.

SLICING AND DICING AN ARGUMENTS LIST

For our next example, we’ll build a function that multiplies the first argument with
the largest of the remaining arguments. This probably isn’t something that’s particu-
larly applicable in our applications, but it is an example of yet more techniques for
dealing with arguments within a function.

 This might seem simple enough—we’ll grab the first argument and multiply it by
the result of using the Math.max() function (which we’ve already become familiar with)
on the remainder of the argument values. Because we only want to pass the array that
starts with the second element in the arguments list to Math.max(), we’ll use the slice()
method of arrays to create an array that omits the first element.

 So, we go ahead and write up the code shown in the following listing.

<script type="text/javascript">
 function multiMax(multi){
 return multi * Math.max.apply(Math, arguments.slice(1));
 }

 assert(multiMax(3, 1, 2, 3) == 9, "3*3=9 (First arg, by largest.)");
</script>

But when we execute this script, we get a surprise, as shown in figure 4.5. What’s up
with that? Apparently it wasn’t as simple as we first thought.

 As we pointed out earlier in the chapter, the arguments parameter doesn’t refer-
ence a true array. Even though it looks and feels a lot like one—we can iterate over it
with a for loop, for example—it lacks all of the basic array methods, including the very
handy slice().

Listing 4.13 Slicing the arguments list

Figure 4.5 Something’s rotten in the
state of Denmark, and with our code!
Licensed to Maxeta Technologies <account@maxetatech.com>

82 CHAPTER 4 Wielding functions
We could create our own sets of array slice-and-dice methods—a hand-built Argu-matic
utensil, if you will. Or we could create our own array by copying the values into a true
array. But either of these approaches seems ham-handed and redundant when we
know that Array already has the functionality we seek.

 Before we resort to copying the data or creating the Argu-matic, recall the lesson of
listing 4.10, in which we fooled an Array function into treating a non-array as an array.
Let’s use that knowledge and rewrite the code as shown in the next listing.

<script type="text/javascript">

 function multiMax(multi){
 return multi * Math.max.apply(Math,
 Array.prototype.slice.call(arguments, 1));
 }

 assert(multiMax(3, 1, 2, 3) == 9,
 "3*3=9 (First arg, by largest.)");

</script>

We use the same technique that we applied in listing 4.10 to coerce the Array’s slice()
method into treating the arguments “array” as a true array, even if it isn’t one.

 Now that we’ve learned a bit regarding how to deal with the arguments parameter,
let’s look at some techniques for overloading functions based upon what we find there.

FUNCTION OVERLOADING APPROACHES

When it comes to function overloading—the technique of defining a function that
does different things based upon what’s passed to it—it’s easy to imagine that such a
function could be easily implemented by using the mechanisms we’ve learned so far
to inspect the argument list, and to perform different actions in if-then and else-if
clauses. Often, that approach will serve us well, especially if the actions to be taken are
on the simpler side.

 But once things start getting a bit more complicated, lengthy functions using many
such clauses can quickly become unwieldy. In the remainder of this section, we’re
going to explore a technique by which we can create multiple functions—seemingly
with the same name, but each differentiated from the others by the number of argu-
ments they expect—that can be written as distinct and separate anonymous functions
rather than as a monolithic if-then-else-if block.

 All of this hinges on a little-known property of functions that we need to learn
about first.

THE FUNCTION’S LENGTH PROPERTY

There’s an interesting property on all functions that isn’t very well known, but that
gives us an insight into how the function was declared: the length property. This prop-
erty, not to be confused with the length property of the arguments parameter, equates
to the number of named parameters with which the function was declared.

Listing 4.14 Slicing the arguments list—successfully this time

Fools the slice() method into
working on the arguments
list, which you may recall

isn’t an instance of Array.
Licensed to Maxeta Technologies <account@maxetatech.com>

83Variable-length argument lists
 Thus, if we declare a function with a single formal parameter, its length property
will have a value of 1. Examine the following code:

function makeNinja(name){}
function makeSamurai(name, rank){}
assert(makeNinja.length == 1, "Only expecting a single argument");
assert(makeSamurai.length == 2, "Two arguments expected");

As a result, within a function, we can determine two things about its arguments:

■ How many named parameters it was declared with, via the length property
■ How many arguments were passed on the invocation, via arguments.length

Let’s see how this property can be used to build a function that we can use to create
overloaded functions, differentiated by argument count.

OVERLOADING FUNCTIONS BY ARGUMENT COUNT

There are any number of ways that we can decide to overload what a function does
based upon its arguments. One common approach is to perform different operations
based upon the type of the passed arguments. Another could be switching based upon
whether certain parameters are present or absent. Still another is based upon the
count of the passed arguments. We’ll be looking at this approach in this section.

 Suppose we want to have a method on an object that performs different operations
based upon argument count. If we want to have long, monolithic functions, we could
do something like the following:

var ninja = {
 whatever: function() {
 switch (arguments.length) {
 case 0:
 /* do something */
 break;
 case 1:
 /* do something else */
 break;
 case 2:
 /* do yet something else */
 break;
 //and so on ...
 }
 }
}

In this approach, each case would perform a different operation based upon the argu-
ment count, obtaining the actual arguments through the arguments parameter. But
that’s not very tidy, and certainly not very ninja, is it?

 Let’s posit another approach. What if we wanted to add the overloaded method
using syntax along the following lines:

var ninja = {};
addMethod(ninja,'whatever',function(){ /* do something */ });
addMethod(ninja,'whatever',function(a){ /* do something else */ });
addMethod(ninja,'whatever',function(a,b){ /* yet something else */ });
Licensed to Maxeta Technologies <account@maxetatech.com>

84 CHAPTER 4 Wielding functions

Cr

anon
function
become

me
Here we create the object and then add methods to it using the same name (whatever),
but with separate functions for each overload. Note how each overload has a different
number of parameters specified. This way, we actually create a separate anonymous
function for each overload. Nice and tidy!

 But the addMethod() function doesn’t exist, so we’ll need to create it ourselves. Keep
your arms in the cart at all times, as this one’s going to be a bit of a short but wild ride.

 Take a look at the following listing.

function addMethod(object, name, fn) {
 var old = object[name];
 object[name] = function(){
 if (fn.length == arguments.length)
 return fn.apply(this, arguments)
 else if (typeof old == 'function')
 return old.apply(this, arguments);
 };
}

Our addMethod() function accepts three arguments:

■ An object upon which a method is to be bound
■ The name of the property to which the method will be bound
■ The declaration of the method to be bound

Look again at our usage example:

var ninja = {};
addMethod(ninja,'whatever',function(){ /* do something */ });
addMethod(ninja,'whatever',function(a){ /* do something else */ });
addMethod(ninja,'whatever',function(a,b){ /* yet something else */ });

The first call to addMethod() will create a new anonymous function that, when called
with a zero-length argument list, will call the passed fn function. Because ninja is a
new object at this point, there’s no previously established method to worry about.

 On the next call to addMethod(), we store a reference to the anonymous function
that we created in the previous invocation in the variable old B, and we proceed to
create another anonymous function that becomes the method c. This newer
method will check to see if the number of passed arguments is 1, and if so, will invoke
the function passed as fn d. Failing that, it will call the function stored in old e,
which as you’ll recall, will check for zero parameters and call the version of fn with
zero parameters.

 On the third call to addMethod(), we pass an fn that takes two parameters, and we go
through the process again: creating yet another anonymous function that becomes
the method, and calling the two-parameter fn when two arguments are passed, and
deferring to the previously created one-argument function.

Listing 4.15 A method-overloading function

Stores the previous function because we may need
to call it if the passed function doesn’t have a
matching number of arguments

 b

eates
a new
ymous
 that
s the
thod c

Invokes the passed function if its
parameter and argument counts match d

Invokes the previous function if
passed function isn’t a match

 e
Licensed to Maxeta Technologies <account@maxetatech.com>

85Variable-length argument lists
 It’s almost as if we’re winding the functions around each other like the layers of an
onion, each layer checking for a matching number of arguments and deferring to a
previously created layer if no match is found.

 There’s a bit of sleight of hand going on here with regard to how the inner anony-
mous function accesses old and fn, and it involves a concept called closures, which we’ll
take a close look at in the next chapter. For now, just accept that when it executes, the
inner function has access to the current values of old and fn.

 Let’s test our new function in the next listing.

<script type="text/javascript">

 var ninjas = {
 values: ["Dean Edwards", "Sam Stephenson", "Alex Russell"]
 };

 addMethod(ninjas, "find", function(){
 return this.values;
 });

 addMethod(ninjas, "find", function(name){
 var ret = [];
 for (var i = 0; i < this.values.length; i++)
 if (this.values[i].indexOf(name) == 0)
 ret.push(this.values[i]);
 return ret;
 });

 addMethod(ninjas, "find", function(first, last){
 var ret = [];
 for (var i = 0; i < this.values.length; i++)
 if (this.values[i] == (first + " " + last))
 ret.push(this.values[i]);
 return ret;
 });

 assert(ninjas.find().length == 3,
 "Found all ninjas");
 assert(ninjas.find("Sam").length == 1,
 "Found ninja by first name");
 assert(ninjas.find("Dean", "Edwards").length == 1,
 "Found ninja by first and last name");
 assert(ninjas.find("Alex", "Russell", "Jr") == null,
 "Found nothing");

</script>

Loading this page to run the tests shows that they all succeed, as shown in figure 4.6.
 To test our method-overloading function, we define a base object containing some

test data consisting of well-known JavaScript ninjas B, to which we’ll bind three meth-
ods, all with the name find. The purpose of all these methods will be to find a ninja
based upon criteria passed to the methods.

Listing 4.16 Testing the addMethod() function

Declares an object to serve as the
base, preloaded with some test data b

Binds a no-argument method
to the base object c

Binds a single-argument
method to the base object

 d

Binds a dual-argument
method to the base object
 e

Tests the
bound methods
Licensed to Maxeta Technologies <account@maxetatech.com>

86 CHAPTER 4 Wielding functions
We declare and bind three versions of a find() method:

■ One expecting no arguments that returns all ninjas c
■ One that expects a single argument and that returns any ninjas whose name

starts with the passed text d
■ One that expects two arguments and that returns any ninjas whose first and last

names match the passed strings e

This technique is especially nifty because these bound functions aren’t actually stored
in any typical data structure. Rather, they’re all saved as references within closures.
Again, we’ll talk much more about closures in the next chapter.

 It should be noted that there are some caveats to be aware of when using this par-
ticular technique:

■ The overloading only works for different numbers of arguments; it doesn’t dif-
ferentiate based on type, argument name, or anything else. Which is frequently
exactly what we’ll want to do.

■ Such overloaded methods will have some function call overhead. We’ll want to
take that into consideration in high-performance situations.

Nonetheless, this function provides a good example of some functional techniques, as
well as an opportunity to introduce the length property of functions.

 So far in this chapter, we’ve seen how functions are treated as first-class objects by
JavaScript. Now let’s look at one more thing we might do to functions as objects:
checking to see if an object is a function.

4.5 Checking for functions
To close out our look at functions in JavaScript, let’s take a look at how we can detect
when a particular object is an instance of a function, and therefore something that
can be called. It’s a seemingly simple task, but it’s not without its cross-browser issues.

 Typically the typeof statement is more than sufficient to get the job done, such as
in the following code:

function ninja(){}

assert(typeof ninja == "function",
 "Functions have a type of function");

Figure 4.6 Ninjas found, all using the
same overloaded method name find()
Licensed to Maxeta Technologies <account@maxetatech.com>

87Checking for functions
This should be the typical way that we check if a value is a function, and this will always
work if what we’re testing is indeed a function. But there are a few cases where this test
may yield some false-positives that we need to be aware of:

■ Firefox—Doing a typeof on the HTML <object> element yields an inaccurate
“function” result, instead of “object” as we might expect.

■ Internet Explorer—When attempting to find the type of a function that was part
of another window (such as an iframe) that no longer exists, its type will be
reported as “unknown.”

■ Safari—Safari considers a DOM NodeList to be a function. So typeof docu-
ment.body.childNodes == "function".

For situations in which these specific cases cause our code to trip up, we need a solu-
tion that will work in all of our target browsers, allowing us to detect if those particular
functions (and non-functions) report themselves correctly.

 There are a lot of possible avenues for exploration here; unfortunately almost all of
the techniques end up in a dead-end. For example, we know that functions have apply()
and call() methods, but those methods don’t exist on Internet Explorer’s problematic
functions. One technique that does work fairly well is to convert the function to a string
and determine its type based upon its serialized value, as in the following code:

function isFunction(fn) {
 return Object.prototype.toString.call(fn) === "[object Function]";
}

Even this test isn’t perfect, but in situations like the preceding ones, it’ll pass all the
cases that we listed, giving us a correct value to work with.

NOTE We’ll be covering exactly what a function’s prototype property is for
and how it operates quite extensively in chapter 6. For now, just be aware that
it’s an important part of a constructor function that dictates what properties
and methods will be part of a constructed object.

There is one notable exception, however. (Isn’t there always?) Internet Explorer reports
methods of DOM elements with a type of “object,” like so: typeof domNode.getAttribute
== "object" and typeof inputElem.focus == "object". So this particular technique doesn’t
cover this case.

 The implementation of isFunction() requires a little bit of magic in order to make
it work correctly: we access the internal toString() method of the Object.prototype.
This particular method, by default, is designed to return a string that represents the
internal representation of an object (such as a Function or String). Using this method,
we can then call it against any object to access its true type. (This technique expands
beyond just determining whether something is a function and also works for Strings,
RegExp, Date, and other objects.)
Licensed to Maxeta Technologies <account@maxetatech.com>

88 CHAPTER 4 Wielding functions
 The reason why we don’t just directly call fn.toString() to try and get this result
is twofold:

■ Individual objects are likely to have their own toString() implementations.
■ Most types in JavaScript already have a predefined toString() method that over-

rides the method provided by Object.prototype.

By accessing the Object.prototype method directly, we ensure that we’re not getting an
overridden version of toString(), and we end up with the exact information that we need.

 This is just a quick taste of the strange world of cross-browser scripting. Writing
code that works seamlessly in multiple browsers can be quite challenging, but it’s a
necessary skill for anyone who wants to write code that’s robust and workable on the
web. We’ll explore lots more cross-browser strategies as we go along, and they’ll be
the entire focus of chapter 11.

4.6 Summary
In this chapter, we took the knowledge that we gained in chapter 3 and wielded it to
solve a number of problems that we’re likely to find in applications.

 In particular

■ Anonymous functions let us create smaller units of execution rather than large
functions full of imperative statements.

■ Looking at recursive functions, we learned how functions can be referenced in
various ways, including:
– By name
– As a method (via an object property name)
– By an inline name
– Through the callee property of arguments

■ Functions can have properties and those properties can be used to store any
information we might wish to use, including
– Storing functions in function properties for later reference and invocation.
– Using function properties to create a cache (memoization).

■ By controlling what function context is passed to a function invocation, we can
“fool” methods into operating on objects that aren’t the object that they’re
methods for. This can be useful for leveraging already existing methods on
objects like Array and Math to operate on our own data.

■ Functions can perform different operations based upon the arguments that are
passed to it (function overloading). We can inspect the arguments list to determine
what it is we’d like to do given the type or number of the passed arguments.

■ An object can be checked to see if it’s an instance of a function by testing if the
result of the typeof operator is “function”. This isn’t without its cross-browser issues.

One of our examples, listing 4.15 to be precise, made heavy use of a concept known as
a closure, which controls what data values are available to a function while it’s execut-
ing. Let’s spend a chapter taking a closer look at this essential concept.
Licensed to Maxeta Technologies <account@maxetatech.com>

Closing in on closures
Closely tied to the functions that we learned all about in the previous chapters, clo-
sures are a defining feature of JavaScript. While scores of page authors get along
writing on-page script without understanding the benefits of closures, the use of
closures can not only help us reduce the amount and complexity of the script nec-
essary to add advanced features to our pages, they allow us to do things that would
simply not be possible, or would simply be too complex to be feasible, without
them. The landscape of the language, and how we write our code using it, is forever
shaped by the inclusion of closures.

 Traditionally, closures have been a feature of purely functional programming
languages. Having them cross over into mainstream development has been particu-
larly encouraging, and it’s not uncommon to find closures permeating JavaScript
libraries, along with other advanced code bases, due to their ability to drastically
simplify complex operations.

In this chapter we discuss
■ What closures are and how they work
■ Using closures to simplify development
■ Improving performance using closures
■ Solving common scoping issues with closures
89

Licensed to Maxeta Technologies <account@maxetatech.com>

90 CHAPTER 5 Closing in on closures
 In this chapter, we’ll explore what closures are all about and look at how we can
use them to elevate our on-page script to world-class levels.

5.1 How closures work
Succinctly put, a closure is the scope created when a function is declared that allows the
function to access and manipulate variables that are external to that function. Put
another way, closures allow a function to access all the variables, as well as other func-
tions, that are in scope when the function itself is declared.

 That may seem rather intuitive until you remember that a declared function can
be called at any later time, even after the scope in which it was declared has gone away.

 This concept is probably best explained through code, so let’s start small with the
following listing.

<script type="text/javascript">

 var outerValue = 'ninja';

 function outerFunction() {
 assert(outerValue == "ninja","I can see the ninja.");
 }

 outerFunction();

</script>

In this code example, we declare a variable B and a function c in the same scope—
in this case, the global scope. Afterwards, we cause the function to execute d.

 As can be seen in figure 5.1, the function is able to “see” and access the outerValue
variable. You’ve likely written code such as this hundreds of times without realizing
that you were creating a closure!

 Not impressed? I guess that’s not surprising. Because both the outer value and the
outer function are declared in global scope, that scope (which is actually a closure)
never goes away (as long as the page is loaded), and it’s not surprising that the func-
tion can access the variable because it’s still in scope and viable. Even though the clo-
sure exists, its benefits aren’t yet clear.

Listing 5.1 A simple closure

Defines a value in
global scope b

Declares a
function in
global scope

 c

Executes the
function d

Figure 5.1 Our function has found the
ninja, who was hiding in plain sight.
Licensed to Maxeta Technologies <account@maxetatech.com>

91How closures work

Invoke
the ou
functi
causes
functi
declar
refere
assigne
later.
Let’s spice it up a little in the next listing.

<script type="text/javascript">

 var outerValue = 'ninja';

 var later;

 function outerFunction() {
 var innerValue = 'samurai';

 function innerFunction() {
 assert(outerValue,"I can see the ninja.");
 assert(innerValue,"I can see the samurai.");
 }

 later = innerFunction;
 }

 outerFunction();

 later();

</script>

Let’s over-analyze the code in innerFunction() and see if we predict what might happen.
 The first assert is certain to pass: outerValue is in the global scope and is visible to

everything. But what about the second?
 We’re executing the inner function after the outer function has been executed via

the trick of copying a reference to the function to a global reference (later). When
the inner function executes, the scope inside the outer function is long gone and not
visible at the point at which we’re invoking the function through later.

 So we could very well expect the assert to fail, as innerValue is sure to be
undefined. Right?

 But when we run the test, we see the display shown in figure 5.2.
 How can that be? What magic allows the innerValue variable to still be “alive” when

we execute the inner function, long after the scope in which it was created has gone
away? The answer, of course, is closures.

Listing 5.2 A not-so-simple closure

Declares an empty variable that we’ll use later. See how proper
naming helps us understand what something is used for?

Declares a value inside the function. This variable’s
scope is limited to the function and cannot be

accessed from outside the function.

Declares an inner function within
the outer function. Note that
innerValue is in scope when we
declare this function.

Stores a reference to the inner function in the
later variable. Because later is in the global

scope, it will allow us to call the function later.

s
ter
on, which
 the inner
on to be
ed and its
nce
d to

Invokes the inner function through later. We
can’t invoke it directly because its scope (along

with innerValue) is limited to within outerFunction().

Figure 5.2 Despite trying to hide inside
a function, the samurai has been spied!
Licensed to Maxeta Technologies <account@maxetatech.com>

92 CHAPTER 5 Closing in on closures
When we declared innerFunction() inside the outer function, not only was the func-
tion declaration defined, but a closure was also created that encompasses not only the
function declaration, but also all variables that are in scope at the point of the declaration.

 When innerFunction() eventually executes, even if it’s executed after the scope in
which it was declared goes away, it has access to the original scope in which it was
declared through its closure, as shown in Figure 5.3.

 That’s what closures are all about. They create a “safety bubble,” if you will, of the
function and the variables that are in scope at the point of the function’s declaration,
so that the function has all it will need to execute.

 This “bubble,” containing the function and its variables, stays around as long as the
function itself does.

 Let’s augment that example with a few additions to observe a few more core princi-
ples of closures. Take a look at the following listing, in which the additions are high-
lighted in bold.

<script type="text/javascript">

 var outerValue = 'ninja';
 var later;

 function outerFunction() {
 var innerValue = 'samurai';

 function innerFunction(paramValue) {
 assert(outerValue,"Inner can see the ninja.");

Listing 5.3 What else closures can see

Figure 5.3 Like a protective bubble,
the closure for innerFunction()
keeps the variables in the function’s
scope from being garbage-collected
as long as the function exists.

Added a parameter
to inner function. b
Licensed to Maxeta Technologies <account@maxetatech.com>

93How closures work

Look
later
the s
scope
this
asser
pass?
 assert(innerValue,"Inner can see the samurai.");
 assert(paramValue,"Inner can see the wakizashi.");
 assert(tooLate,"Inner can see the ronin.");
 }

 later = innerFunction;
 }

 assert(!tooLate,"Outer can't see the ronin.");

 var tooLate = 'ronin';

 outerFunction();
 later('wakizashi');

</script>

Enough suspense ... here’s what happens. To our previous code we’ve made a number
of interesting additions. We added a parameter B to the inner function, and we pass
a value to the function when it’s invoked through later f. We also added a variable
that’s declared after the outer function declaration e.

 When the tests inside c and outside d the inner function execute, we can see the
display in figure 5.4.

 This shows three more interesting concepts regarding closures:

■ Function parameters are included in the closure of that function. (Seems obvi-
ous, but now we’ve said it for sure.)

■ All variables in an outer scope, even those declared after the function declara-
tion, are included.

■ Within the same scope, variables not yet defined cannot be forward-referenced.

The second and third points explain why the inner closure can see variable tooLate,
but the outer closure cannot.

 It’s important to note that while all of this structure isn’t readily visible anywhere
(there’s no “closure” object holding all of this information that you can inspect),
there’s a direct cost to storing and referencing information in this manner. It’s impor-
tant to remember that each function that accesses information via a closure has a “ball
and chain,” if you will, attached to it carrying this information around. So while closures

Tests if we can see the
parameter (duh!), and also
tests to see if the closure
includes variables that are

declared after the function is
declared. What do you think

will happen?

 c
s for a
 value in
ame
. Will
fail as
ted? Or

 d

Declares a value after the
inner function declaration. e

Calls the inner function to run its contained
tests. Can you predict the results? f

Figure 5.4 Turns out that inner can see
farther than outer!
Licensed to Maxeta Technologies <account@maxetatech.com>

94 CHAPTER 5 Closing in on closures

Defi
const
for a

Now f
testing
we con
an inst
of Nin
are incredibly useful, they certainly aren’t free of overhead. All that information needs
to be held in memory until it’s absolutely clear to the JavaScript engine that it will no
longer be needed (and is safe to garbage-collect), or until the page unloads.

5.2 Putting closures to work
Now that we understand what closures are and how they work (at least at a high level),
let’s see how we can put them to work on our pages.

5.2.1 Private variables

A common use of closures is to encapsulate some information as a “private variable”
of sorts—in other words, to limit the scope of such variables. Object-oriented code
written in JavaScript is unable to use traditional private variables: properties of the
object that are hidden from outside parties. But by using the concept of a closure, we
can achieve an acceptable approximation, as demonstrated by the following code.

<script type="text/javascript">

 function Ninja() {

 var feints = 0;

 this.getFeints = function(){
 return feints;
 };

 this.feint = function(){
 feints++;
 };
 }

 var ninja = new Ninja();

 ninja.feint();

 assert(ninja.getFeints() == 1,
 "We're able to access the internal feint count.");

 assert(ninja.feints === undefined,
 "And the private data is inaccessible to us.");

</script>

In listing 5.4, we create a function that is to serve as a constructor B. We introduced
the concept of using a function as a constructor in the previous chapter, and we’ll be
taking an in-depth look at it again in chapter 6. For now, just recall that when using

Listing 5.4 Using closures to approximate private variables

nes the
ructor
 Ninja. b

Declares a variable inside the function (constructor).
Because the scope of the variable is limited to
inside the constructor, it’s a “private” variable. We’ll
use it to count how many times the ninja has feinted.

 c

Creates an accessor method for the feints counter. As the
variable is not accessible to code outside the constructor,
this is a common way to give read-only access to the value.

 d

Declares the increment method for the value. Because the value is
private, no one can screw it up behind our backs; they are limited to
the access that we give them via methods.

 e

or
; first
struct
ance
ja.

 f

Calls the feint() method, which increments the count
of the number of times that our ninja has feinted. g

Verifies that we can’t get
at the variable directly. h

Shows that we’ve caused the value to increment to 1, even though
we had no direct access to it. We can affect the feints value because,
even though the constructor in which it’s declared has finished executing and gone
out of scope, the feints variable is bound into the closure (think protective bubble)
created by the declaration of the feint() method, and is available to that method.

 i
Licensed to Maxeta Technologies <account@maxetatech.com>

95Putting closures to work
the new keyword on a function f, a new object instance is created and the function is
called, with that new object as its context, to serve as a constructor to that object. So
this within the function is a newly instantiated object.

 Within the constructor, we define a variable to hold state, feints c. The JavaScript
scoping rules for this variable limit its accessibility to within the constructor. To give
access to the value of the variable from code that’s outside the scope, we define an
accessor method d, getFeints(), which can be used to read, but not write to, the pri-
vate variable. (Accessor methods are frequently called “getters.”)

 An implementation method, feint(), is then created to give us control over the
value of the variable in a controlled fashion e. In a real-world application, this might
be some business method; in this example, it merely increments the value of feints.

 After the constructor has been established, we invoke it with the new operator f
and then call the feint() method g.

 Our tests h i show that we can use the accessor method to obtain the value of
the private variable, but that we cannot access it directly. This effectively prevents us
from being able to make uncontrolled changes to the value of the variable, just as if it
were a private variable in a fully object-oriented language.

 This situation is depicted in figure 5.5.
 This allows the state of the ninja to be maintained within a method, without letting

it be directly accessed by a user of the method, because the variable is available to the
inner methods via their closures, but not to code that lies outside the constructor.

Figure 5.5 Hiding
the variable inside the
constructor keeps it
invisible to the outer
scope, but where it
counts, the variable is
alive and well inside
the closure.

var feints;

var ninja;

function feint()

Ninja instance
Licensed to Maxeta Technologies <account@maxetatech.com>

96 CHAPTER 5 Closing in on closures

Preloa
<div>
some t
let th
know t
someth
going o
This is a glimpse into the world of object-oriented JavaScript, which we’ll explore in
much greater depth in the upcoming chapter.

 For now, let’s focus on another common use of closures.

5.2.2 Callbacks and timers

Another one of the most common areas in which we can use closures is when deal-
ing with callbacks or timers. In both cases, a function is being asynchronously called
at an unspecified later time, and within such functions we frequently need to access
outside data.

 Closures act as an intuitive way of accessing that data, especially when we wish to
avoid creating extra top-level variables just to store that information. Let’s look at a
simple example of an Ajax request, using the jQuery JavaScript Library, as shown in
the following listing.

<div id="testSubject"></div>

<button type="button" id="testButton">Go!</button>

<script type="text/javascript">
 jQuery('#testButton').click(function(){

 var elem$ = jQuery("#testSubject");

 elem$.html("Loading...");

 jQuery.ajax({
 url: "test.html",
 success: function(html){
 assert(elem$,
 "We can see elem$, via the closure for this callback.");
 elem$.html(html);
 }
 });

 });
</script>

Even though this example is short, there are a number of interesting things going on
in listing 5.5. We start with an empty <div> element, which on the click of a button B
we want to load with the text “Loading...” d. Meanwhile an Ajax request will be under
way that will fetch new content from the server to load into that <div> when the
response returns.

 We need to reference the <div> element twice: once to preload it, and once to
load it with the server content whenever the response comes back from the server.
We could look up a reference to the <div> element each time, but we want to be stingy
regarding performance, so we’ll just look it up once and store it away in a variable
named elem$ c.

Listing 5.5 Using closures from a callback for an Ajax request

Establishes a click handler on the
test button. This function passed
to the click() method will be called
whenever the button is clicked.

 b

Declares a variable named elem$ that
contains a reference to the <div> element
defined at the top of the code.

 cds the
with
ext to
e users
hat
ing’s
n.

 d

Within the argument list passed to the jQuery ajax() method, we define a callback
to be called when the Ajax request returns its response from the server. The response
text is passed to the callback in the html parameter, which we inject into the <div>
element through the elem$ variable in the closure.

 e
Licensed to Maxeta Technologies <account@maxetatech.com>

97Putting closures to work

Est
coun
keep
of a
tick

n
d
t
.

TIP Using the $ sign as a suffix or prefix is a jQuery convention to indicate
that the variable holds a jQuery object reference.

Within the arguments passed to the jQuery ajax() method, we define an anonymous
function e to serve as the response callback. Within this callback, we reference the
elem$ variable via the closure and use it to stuff the response text into the <div>.

 Even though the code was fairly short, a lot of complicated things went on in that
example. Be sure you understand why the callback can access elem$ before proceed-
ing. If you like, load the example into a browser and set a breakpoint at the callback to
look around at what’s in scope when you get there.

 Now let’s look at the slightly more complicated example that creates a simple ani-
mation in the next listing.

<div id="box">ボックス </div>

<script type="text/javascript">

 function animateIt(elementId) {

 var elem = document.getElementById(elementId);
 var tick = 0;

 var timer = setInterval(function(){
 if (tick < 100) {
 elem.style.left = elem.style.top = tick + "px";
 tick++;
 }
 else {
 clearInterval(timer);
 assert(tick == 100,
 "Tick accessed via a closure.");
 assert(elem,
 "Element also accessed via a closure.");
 assert(timer,
 "Timer reference also obtained via a closure.");
 }
 }, 10);

 }

 animateIt('box');

</script>

Loading the example into a browser, we see the display in figure 5.6 when the anima-
tion has completed.

 What’s especially important about the code in listing 5.6 is that it uses a single
anonymous function e to accomplish the animation of the target element B. That
function accesses three variables, via a closure, to control the animation process.

 The three variables (the reference to the DOM element c, the tick counter d,
and the timer reference e) all must be maintained across the steps of the animation.
And we need to keep them out of the global scope.

Listing 5.6 Using a closure in a timer interval callback

Creates the element
that we’re going

to animate. b
Inside the animateIt()
function, we get a
reference to that
element.

 c

ablishes a
ter to
 track
nimation
s (steps).

 d
Creates and starts an interval timer give

a callback function that will be invoke
every 10 milliseconds. For 100 ticks i
will adjust the position of the element

 e

After 100 ticks we stop
the timer and perform

tests to assert that
we can see all relevant

variables needed to
perform the animation.

Now that it’s all set up,
we set it in motion!
Licensed to Maxeta Technologies <account@maxetatech.com>

98 CHAPTER 5 Closing in on closures
But why? The example will still work fine if we move the variables out of the
animateIt() function and into the global scope. So why all the arm flailing about not
polluting the global scope?

 Go ahead and move the variables into the global scope and verify that the exam-
ple still works. Now modify the example to animate two elements: add another ele-
ment with a unique ID, and call the animateIt() method with that ID right after the
original call.

 The problem immediately becomes obvious. If we keep the variables in the
global scope, we need a set of three variables for each animation—otherwise they’ll
step all over each other trying to use the same set of variables to keep track of mul-
tiple states.

 By defining the variables inside the function, and by relying upon the closures to
make them available to the timer callback invocations, each animation gets its own
private “bubble” of variables, as shown in figure 5.7.

 Without closures, doing multiple things at once, whether event handling, anima-
tions, or even Ajax requests, would be incredibly difficult. If you’ve been waiting for a
reason to care about closures, this is it!

 There’s another important concept that this example makes clear. Not only do we
see the values that these variables had at the time the closure was created, but we can
also update them within the closure while the function within the closure executes. In
other words, the closure isn’t simply a snapshot of the state of the scope at the time of
creation, but an active encapsulation of that state that can be modified as long as the
closure exists.

 This example is a particularly good one for demonstrating how the concept of clo-
sures is capable of producing some surprisingly intuitive and concise code. By simply
including the variables in the animateIt() function, we create an implied closure with-
out needing any complex syntax.

Figure 5.6 Closures can be used to
keep track of the steps of an animation
Licensed to Maxeta Technologies <account@maxetatech.com>

99Binding function contexts
Now that we’ve seen closures used in various callbacks, let’s take a look at some of the
other ways in which they can be applied, starting with using them to bend function
contexts to our wills.

5.3 Binding function contexts
During our discussion of function contexts in the previous chapter, we saw how the
call() and apply() methods could be used to manipulate the context of a function.
While this manipulation can be incredibly useful, it can also be potentially harmful to
object-oriented code.

 Consider the following code, in which a function that serves as an object method is
bound to a DOM element as an event listener.

Figure 5.7 By creating multiple closures, we can
do many things at once.
Licensed to Maxeta Technologies <account@maxetatech.com>

100 CHAPTER 5 Closing in on closures

Create
button
element
which w
assign e
handler

test
has

<button id="test">Click Me!</button>

<script type="text/javascript">
 var button = {

 clicked: false,

 click: function(){
 this.clicked = true;
 assert(button.clicked,"The button has been clicked");
 }

 };

 var elem = document.getElementById("test");
 elem.addEventListener("click",button.click,false);

</script>

In this example, we have a button B, and we want to know whether it has ever been
clicked or not. In order to retain that state information, we create a backing object
named button c, in which we’ll store the clicked state. In that object, we’ll also define
a method that will serve as an event handler d that will fire when the button
is clicked. That method, which we establish as a click handler for the button f, sets
the clicked property to true and then tests e that the state was properly recorded
in the backing object.

 When we load the example into a browser and click the button, we see by the display
of figure 5.8 that something is amiss; the stricken text indicates that the test has failed.

 The code in listing 5.7 fails because the context of the click function is not refer-
ring to the button object as we intended.

 Recalling the lessons of chapter 3, if we had called the function via

button.click()

the context would indeed have been the button. But in our example, the event-
handling system of the browser defines the context of the invocation to be the target
element of the event, which causes the context to be the <button> element, not the
button object. So we set our click state on the wrong object!

Listing 5.7 Binding a specific context to a function

s a

 to
e’ll
vent
.

 b

Defines an object to retain state regarding
our button. With it, we’ll track whether the
button has been clicked or not.

 c

Declares the method that we’ll use as the click handler.
Because it’s a method of the object, we use this within
the function to get a reference to the object.

 d

Within the method, we
that the button state
been correctly changed
after a click.

 e

Establishes the click
handler on the button.

 f

Figure 5.8 Why did our test fail? Where
did the change of state go?
Licensed to Maxeta Technologies <account@maxetatech.com>

101Binding function contexts
Setting the context to the target element when an event handler is invoked is a
perfectly reasonable default, and one that we can, and will, count on in many sit-
uations. But in this instance, it’s in our way. Luckily, closures give us a way
around this.

 We can force a particular function invocation to always have a desired context by
using a mix of anonymous functions, apply(), and closures. Take a look at the follow-
ing code, which updates the code of listing 5.7 with additions (in bold) to bend the
function context to our wills.

<script type="text/javascript">
 function bind(context,name){
 return function(){
 return context[name].apply(context,arguments);
 };
 }

 var button = {
 clicked: false,
 click: function(){
 this.clicked = true;
 assert(button.clicked,"The button has been clicked");
 console.log(this);
 }
 };

 var elem = document.getElementById("test");
 elem.addEventListener("click",bind(button,"click"),false);

</script>

The secret sauce that we’ve added here is the bind() method B. This method is
designed to create and return a new anonymous function that calls the original
function, using apply(), so that we can force the context to be whatever object we
want. In this case, it’s whatever object we pass to bind() as its first argument. This
context, along with the name of the method to call as the end function, is remem-
bered through the anonymous function’s closure, which includes the parameters
passed to bind().

 Later, when we establish the event handler, we use the bind() method to specify the
event handler rather than using button.click directly c. This causes the wrapping
anonymous function to become the event handler. And when the button is clicked,
that anonymous function will be invoked, which will in turn call the click method,
forcing the context to be the button object.

 The relationships created are depicted in figure 5.9.
 This particular implementation of a binding function makes the assumption that

we’re going to be using an existing method of an object (a function attached as a
property), and that we want that object to be the context. With that assumption,

Listing 5.8 Binding a specific context to an event handler

Defines a “binding”
function that wraps a
call to the method of an
object within another

 b

Uses the binding
function to bind
the button object
as the context of
the handler

 c
Licensed to Maxeta Technologies <account@maxetatech.com>

102 CHAPTER 5 Closing in on closures
bind() only needs two pieces of information: a reference to the object containing the
method, and the name of the method.

 This bind() function is a simplified version of a function popularized by the Proto-
type JavaScript library, which promotes writing code in a clean and classical object-
oriented manner.

 The original Prototype version of the method looks something like the follow-
ing code.

Function.prototype.bind = function(){
 var fn = this, args = Array.prototype.slice.call(arguments),
 object = args.shift();

 return function(){
 return fn.apply(object,
 args.concat(Array.prototype.slice.call(arguments)));
 };
};

var myObject = {};
function myFunction(){
 return this == myObject;
}

Listing 5.9 An example of the function-binding code used in the Prototype library

Adds the bind()
method to all

functions via its
prototype. That’s
something we’ll see

in the next chapter.

 b

Figure 5.9 The anonymous function serves as an event-
handling proxy for the “real” handler, which is identified though
parameters bound to the closure.
Licensed to Maxeta Technologies <account@maxetatech.com>

103Partially applying functions
assert(!myFunction(), "Context is not set yet");

var aFunction = myFunction.bind(myObject)
assert(aFunction(), "Context is set properly");

This method is quite similar to the function we implemented in listing 5.8, but with a cou-
ple of notable additions. To start, it attaches itself to all functions, rather than presenting
itself as a globally accessible function B by adding itself as a property of the prototype of
JavaScript’s Function. We’ll be exploring prototypes in chapter 6, but for now just think of
a prototype as the central blueprint for a JavaScript type; in this case, for all functions.

 We’d use this function, bound as a method to all functions (via the prototype), like
so: var boundFunction = myFunction.bind(myObject). Additionally, with this method, we’re
able to bind arguments to the anonymous function. This allows us to pre-specify some
of the arguments, in a form of partial function application (which we’ll discuss in the
very next section).

 It’s important to realize that Prototype’s bind() (or our own implementation of it)
isn’t meant to be a replacement for methods like apply() or call(). Remember, the
underlying purpose is controlling the context for delayed execution via the anony-
mous function and closure. This important distinction makes apply() and call() espe-
cially useful for delayed execution callbacks for event handlers and timers.

NOTE A native bind() method is defined on functions as of JavaScript 1.8.5.

Now, what about those prefilled function arguments we mentioned a moment ago?

5.4 Partially applying functions
“Partially applying” a function is a particularly interesting technique in which we can
prefill arguments to a function before it’s even executed. In effect, partially applying a
function returns a new function with predefined arguments, which we can later call.

 This sort of proxy function—one that stands in for another function and calls that
function when executed—is exactly the technique we used in the previous section to
“bind” specific contexts to function invocations. Here we’ll put the same technique
to a different use.

 This technique of filling in the first few arguments of a function (and returning a
new function) is typically called currying. As usual, this is best understood through
examples. But before we look at how we’ll actually implement currying, let’s look at
how we might want to use it.

 Let’s say that we wanted to split a CSV (comma-separated value) string into its com-
ponent parts, ignoring extraneous whitespace. We can easily do that with the String’s
split() method, supplying an appropriate regular expression:

var elements = "val1,val2,val3".split(/,\s*/);

NOTE If you’re rusty with regular expressions, that’s OK. This one just says to
match a comma followed by any amount of whitespace. You’ll be an old pro at
regular expressions once you’ve worked your way through chapter 7.
Licensed to Maxeta Technologies <account@maxetatech.com>

104 CHAPTER 5 Closing in on closures

Invok
curri
funct
But having to remember and type that regular expression all the time can be tire-
some. Let’s implement a csv() method to do it for us and imagine a method that does
it using currying, as shown in the following listing.

String.prototype.csv = String.prototype.split.partial(/,\s*/);

var results = ("Mugan, Jin, Fuu").csv();

assert(results[0]=="Mugan" &&
 results[1]=="Jin" &&
 results[2]=="Fuu",
 "The text values were split properly");

In listing 5.10 we’ve taken the String’s split() method and have imagined a partial()
method (yet to be implemented, but we’ll take care of that in listing 5.12) that we can
use to prefill the regular expression upon which to split B. The result is a new func-
tion named csv() that we can call at any point to convert a list of comma-separated val-
ues c into an array without having to deal with messy regular expressions.

 Figure 5.10 shows the results we get when we run our test d in the browser. The
implementation that we’re about to create works as expected. If only we had such pre-
saging assurance in day-to-day development!

 With all that in mind, let’s look at how a partial/curry method is (more or less)
implemented in the Prototype library, as seen in the next listing.

Function.prototype.curry = function() {
 var fn = this,
 args = Array.prototype.slice.call(arguments);
 return function() {
 return fn.apply(this, args.concat(
 Array.prototype.slice.call(arguments)));
 };
};

This technique is another good example of using a closure to remember state. In this
case, we want to remember the function that we’re augmenting (the this parameter is
never included in any closure, because each function invocation has its own version of

Listing 5.10 Partially applying arguments to a native function

Listing 5.11 An example of a curry function (filling in the first specified arguments)

Creates new
String function b

es
ed
ion

 c
Tests
results d

Figure 5.10 The CSV-splitting function
works! Now all we have to do is
implement it.

Remembers the function and “prefill”
arguments in variables that will be
captured in the closure

 b

Creates the anonymous
curried function c
Licensed to Maxeta Technologies <account@maxetatech.com>

105Partially applying functions
this) and the arguments to be prefilled B and transfer them to the newly constructed
function c. This new function will have the filled-in arguments and the new arguments
concatenated together and passed. The result is a method that allows us to prefill
arguments, giving us a new, simpler function that we can use.

 While this style of partial function application is perfectly useful, we can do better.
What if we wanted to fill in any missing argument from a given function, not just those
at the beginning of the argument list?

 Implementations of this style of partial function application have existed in other lan-
guages, but Oliver Steele was one of the first to demonstrate it with his Functional.js
library (http://osteele.com/sources/javascript/functional/). The following listing shows
a possible implementation (and this is the implementation that we used to make list-
ing 5.10 work).

Function.prototype.partial = function() {
 var fn = this, args = Array.prototype.slice.call(arguments);
 return function() {
 var arg = 0;
 for (var i = 0; i < args.length && arg < arguments.length; i++) {
 if (args[i] === undefined) {
 args[i] = arguments[arg++];
 }
 }
 return fn.apply(this, args);
 };
};

This implementation is fundamentally similar to Prototype’s curry() method, but it
has a couple of important differences. Notably, the user can specify arguments any-
where in the parameter list that will be filled in later by specifying the undefined value
for “missing” arguments. To accommodate this, we’ve increased the abilities of our
argument-merging technique. Effectively, we loop through the arguments that are
passed in and look for the appropriate gaps (the undefined values), filling in the miss-
ing pieces as we go along.

 Thinking back to the example of constructing a string-splitting function, let’s look
at some other ways in which this new functionality could be used. To start, we could
construct a function that has the ability to be easily delayed:

var delay = setTimeout.partial(undefined, 10);

delay(function(){
 assert(true,
 "A call to this function will be delayed 10 ms.");
});

This snippet creates a new function, named delay(), into which we can pass another
function that will be called asynchronously after 10 milliseconds.

 We could also create a simple function for binding events:

Listing 5.12 A more complex “partial” function
Licensed to Maxeta Technologies <account@maxetatech.com>

http://osteele.com/sources/javascript/functional/

106 CHAPTER 5 Closing in on closures
var bindClick = document.body.addEventListener
 .partial("click", undefined, false);

bindClick(function(){
 assert(true, "Click event bound via curried function.");
});

This technique could be used to construct simple helper methods for event-binding in a
library. The result would be a simpler API where the end user wouldn’t be inconve-
nienced by unnecessary function arguments, reducing them to a simpler function call.

 Up to this point, we’ve used closures to reduce the complexity of our code, demon-
strating some of the power that functional JavaScript programming has to offer. Now
let’s continue to explore using closures in code to add advanced behaviors and fur-
ther simplifications.

5.5 Overriding function behavior
A fun side effect of having so much control over how functions work in JavaScript is
that we can completely manipulate their internal behavior, unbeknownst to anyone
calling the code. Specifically there are two techniques: the modification of how exist-
ing functions work (no closures needed), and the production of new self-modifying
functions based upon existing static functions.

 Remember memoization from chapter 4? Let’s take another look.

5.5.1 Memoization

As we learned in chapter 4, memoization is the process of building a function that is
capable of remembering its previously computed answers. As we demonstrated in that
chapter, it’s pretty straightforward to introduce memoization into an existing func-
tion. But we don’t always have access to the functions that we’d like to optimize.

 The following listing shows a method named memoized() that we can use to remem-
ber return values from an existing function. This implementation doesn’t involve clo-
sures—we’ll see that shortly.

<script type="text/javascript">

 Function.prototype.memoized = function(key){
 this._values = this._values || {};
 return this._values[key] !== undefined ?
 this._values[key] :
 this._values[key] = this.apply(this, arguments);
 };

 function isPrime(num) {
 var prime = num != 1;
 for (var i = 2; i < num; i++) {
 if (num % i == 0) {
 prime = false;
 break;

Listing 5.13 A memoization method for functions

We’re going to store a cache of
values in property values. Here

we check to see if we’ve already
created it, and do so if not.

 b

When we get called with a key,
we check to see if we have a
cached value for it. If so, we
return it. If not, we call the

function and store its value for
next time.

 c

We’ll compute prime
numbers as a test. d
Licensed to Maxeta Technologies <account@maxetatech.com>

107Overriding function behavior
 }
 }
 return prime;
 }

 assert(isPrime.memoized(5),
 "The function works; 5 is prime.");
 assert(isPrime._values[5],
 "The answer has been cached.");

</script>

In this code, we use the familiar isPrime() function d from the previous chapter, and
it’s still painfully slow and awkward, making it a prime candidate for memoization.

 Our ability to introspect into an existing function is limited, but we can easily add
new methods to a function, or indeed to all functions via the prototype. We’ll add a
new memoized() method to all functions that gives us the ability to wrap the functions
and attach properties that are associated with the function itself. This will allow us to
create a data store (cache) in which all of our precomputed values can be saved. Let’s
look at how that works.

 To start, before doing any computation or retrieval of values, we must make sure
that a data store exists and that it’s attached to the parent function itself. We do this
via a simple short-circuiting expression B:

this._values = this._values || {};

If the _values property already exists, we just resave that reference to the property;
otherwise we create the new data store (an initially empty object) and store its refer-
ence in the _values property.

 When we call a function through this method, we look into the data store c to see
if the stored value already exists, and if so, return that value. Otherwise we compute
the value and store it in the cache for any subsequent calls.

 What’s interesting about the preceding code is that we do the computation and
the save in a single step. The value is computed with the apply() call to the function,
and it’s saved directly into the data store. But this statement is within the return state-
ment, meaning that the resulting value is also returned from the parent function. So
the whole chain of events—computing the value, saving the value, and returning the
value—is done within a single logical unit of code.

 Testing the code e shows that we can compute values, and that the value is cached.
 The problem with this approach is that a caller of the isPrime() function must

remember to call it through its memoized() method in order to reap the benefits of
memoization. That won’t do at all.

 With the memoizing method at our disposal to monitor the values coming in and
out of an existing function, let’s explore how we can use closures to produce a new
function that’s capable of having all of its function calls be memoized automatically
without the caller having to do anything weird like remember to call memoized(). The
result is shown in the following listing.

Tests that the function
returns the right value and
that the value is cached.

 e
Licensed to Maxeta Technologies <account@maxetatech.com>

108 CHAPTER 5 Closing in on closures
<script type="text/javascript">

 Function.prototype.memoized = function(key){
 this._values = this._values || {};
 return this._values[key] !== undefined ?
 this._values[key] :
 this._values[key] = this.apply(this, arguments);
 };

 Function.prototype.memoize = function(){
 var fn = this;
 return function(){
 return fn.memoized.apply(fn, arguments);
 };
 };

 var isPrime = (function(num) {
 var prime = num != 1;
 for (var i = 2; i < num; i++) {
 if (num % i == 0) {
 prime = false;
 break;
 }
 }
 return prime;
 }).memoize();

 assert(isPrime(17),"17 is prime");

</script>

Listing 5.14 builds upon our previous example, in which we created the memoized()
method, adding yet another new method, memoize(). This method returns a function
that wraps the original function with the memoized() method applied, such that it will
always return the memoized version of the original function c. This eliminates the
need for the caller to apply memoized() themselves.

 Note that within the memoize() method we construct a closure remembering the
original function (obtained via the context) that we want to memoize B by copying
the context into a variable. This is a common technique: each function has its own
context, so contexts are never part of a closure. But context values can become part of
a closure by establishing a variable reference to the value. By remembering the origi-
nal function, we can return a new function that will always call our memoized() method,
giving us direct access to the memoized instance of the function.

 In listing 5.14 we also show a comparatively strange means of defining a new func-
tion when we define isPrime(). Because we want isPrime() to always be memoized, we
need to construct a temporary function whose results won’t be memoized. We take
this anonymous, prime-figuring function and memoize it immediately, giving us a new
function, which is assigned to the isPrime variable. We’ll discuss this construct in depth
in section 5.6. Note that, in this case, it’s impossible to compute whether a number is
prime in a non-memoized fashion. Only a single isPrime() function exists, and it com-
pletely encapsulates the original function, hidden within a closure.

Listing 5.14 A technique for memoizing functions using closures

Brings the context into the
closure by assigning it to a

variable. Otherwise, the
context is lost, as this is
never part of a closure.

 b

Wraps original function
in memoization function. c

The function is called just like it
would normally be—the caller

doesn’t need to be aware of the
memoization augmentation.
Licensed to Maxeta Technologies <account@maxetatech.com>

109Overriding function behavior

R
o
f
so
c
r
it
a
sh
d

 Listing 5.14 is a good demonstration of obscuring original functionality via a clo-
sure. This can be particularly useful from a development perspective, but it can also
be crippling: if we obscure too much of our code, it becomes unextendable, some-
thing that is clearly undesirable. But hooks for later modification often counteract
this. We’ll discuss this matter in depth later in the book.

5.5.2 Function wrapping

Function wrapping is a technique for encapsulating the logic of a function while overwrit-
ing it with new or extended functionality in a single step. It’s best used when we wish to over-
ride some previous behavior of a function, while still allowing certain use cases to execute.

 A common use is when implementing pieces of cross-browser code in situations
where a deficiency in a browser must be accounted for. Consider, for example, work-
ing around a bug in Opera’s implementation of accessing title attributes. In the Proto-
type library, the function-wrapping technique is employed to work around this bug.

 As opposed to having a large if-else block within its readAttribute() function (a
technique that’s debatably messy and not a particularly good separation of concerns),
Prototype instead opted to completely override the old method by using function
wrapping and deferring the rest of the functionality to the original function.

 Let’s take a look at that. First, we create a wrapping function used to, well, wrap
functions, and then we use that function to create a wrapper for Prototype’s read-
Attribute() method.

function wrap(object, method, wrapper) {

 var fn = object[method];

 return object[method] = function() {
 return wrapper.apply(this, [fn.bind(this)].concat(
 Array.prototype.slice.call(arguments)));
 };
}

if (Prototype.Browser.Opera) {

 wrap(Element.Methods, "readAttribute",
 function(original, elem, attr) {
 return attr == "title" ?
 elem.title :
 original(elem, attr);
 });

}

Listing 5.15 Wrapping an old function with a new piece of functionality

Defines generic wrapping function, taking as
parameters an object whose method is to be wrapped,
name of object method to be wrapped, and function
to be executed in place of original method.

 b

emembers
riginal
unction
 that we

an later
eference
 via
 closure
ould we
esire.

 c

“Wraps” original function by
creating new function that calls

function passed as wrapper. Within
new function, wrapper function

is called with apply(), forcing
function context to object and

passing as arguments the original
method (using bind() to force its
function context to object) and

original arguments.

 d

Uses Prototype mechanism for
browser detection—remember, this code is
from Prototype so it’s eating its own dog
food—to determine if the function needs

to be wrapped.
Uses wrap() function to
substitute new functionality if
attr argument is “title” and
uses original function if not.
Licensed to Maxeta Technologies <account@maxetatech.com>

110 CHAPTER 5 Closing in on closures
Let’s dig in to how the wrap() function works. It’s passed a base object, the name of the
method within that object to wrap, and the new wrapper function. To start, we save a
reference to the original method in fn B; we’ll access it later via the closure of an
anonymous function that we’re about to create.

 We then proceed to overwrite the method with a new anonymous function c. This
new function executes the passed wrapper function (brought to us via the closure),
passing it an augmented arguments list. We want the first argument to be the original
function that we’re overriding, so we create an array containing a reference to the
original function (whose context is bound, using the bind() method from listing 5.8,
to be the same as the wrapper’s), and add the original arguments to this array. The
apply() method, as we know from chapter 3, uses this array as the argument list.

 Prototype uses the wrap() function to override an existing method (in this case
readAttribute()), replacing it with a new function d. But this new function still has
access to the original functionality (in the form of the original argument) provided by
the method. This means that a function can be safely overridden while still retaining
access to the original functionality.

 The use of the closure created by the anonymous wrapping function is depicted in
figure 5.11.

 The result of all this is a reusable wrap() function that we can use to override the
existing functionality of object methods in an unobtrusive manner, making efficient
use of closures.

 Now let’s look at an often-used syntax that looks deucedly odd if you’ve never seen
it before, but that’s an important part of functional programming.

Figure 5.11 The anonymous
wrapping function has access to
the original function, as well as the
passed wrapper function, via
the closure.
Licensed to Maxeta Technologies <account@maxetatech.com>

111Immediate functions
5.6 Immediate functions
An important construct used in advanced functional JavaScript, and which relies upon
making good use of closures, is as follows:

(function(){})()

This single pattern of code is incredibly versatile and ends up giving the JavaScript lan-
guage a ton of unforeseen power. But as its syntax, with all those braces and parenthe-
ses, may seem a little strange, let’s deconstruct what’s going on within it step by step.

 First, let’s ignore the contents of the first set of parentheses, and examine
the construct:

(...)()

We know that we can call any function using the functionName() syntax, but in place of
the function name we can use any expression that references a function instance.
That’s why we can call a function referenced by a variable that refers to the function
using the variable name, like this:

var someFunction = function(){ ... };
result = someFunction();

As with other expressions, if we want an operator—in this case, the function call operator
()—to be applied to an entire expression, we’d enclose that expression in a set of paren-
theses. Consider how the expressions (3 + 4) * 5 and 3 + (4 * 5) differ from each other.

 That means that in (...)(), the first set of parentheses is merely a set of delimiters
enclosing an expression, whereas the second set is an operator. It’d be perfectly legal
to change our example to the following, in which the expression that references the
function is enclosed in parentheses:

var someFunction = function(){ ... };
result = (someFunction)();

It’s just a bit confusing that each set of parentheses has a very different meaning. If the
function call operator were something like || rather than (), the expression (...)||
would likely be less confusing.

 In the end, whatever is within the first set of parentheses will be expected to be a
reference to a function to be executed. Although the first set of parentheses is not
needed in our latest example, the syntax is perfectly valid.

 Now, rather than the variable name, if we directly provided the anonymous func-
tion (omitting any function body for the moment for brevity) within the first set of
parentheses, we’d end up with this syntax:

(function(){...})();

If we go ahead and provide a body for the function, the syntax expands to the following:

(function(){
 statement-1;
 statement-2;
Licensed to Maxeta Technologies <account@maxetatech.com>

112 CHAPTER 5 Closing in on closures
 ...
 statement-n;
})();

The result of this code is an expression that does all of the following in a single statement:

■ Creates a function instance
■ Executes the function
■ Discards the function (as there are no longer any references to it after the state-

ment has ended)

Additionally, because we’re dealing with a function that can have a closure just like
any other, we also have access to all the outside variables and parameters that are in
the same scope as the statement, during the brief life of the function. As it turns out,
this simple construct, called an immediate function, ends up being immensely useful, as
we’re about to see.

 Let’s start by looking at how scope interacts with immediate functions.

5.6.1 Temporary scope and private variables

Using immediate functions, we can start to build up interesting enclosures for our
work. Because the function is executed immediately, and, as with all functions, all the
variables inside of it are confined to its inner scope, we can use it to create a tempo-
rary scope, within which our state can be contained.

NOTE Keep in mind that variables in JavaScript are scoped to the function
within which they’re defined. By creating a temporary function, we can use
this to our advantage and create a temporary scope for our variables to live in.

Let’s see how such temporary and self-contained scopes work.

CREATING A SELF-CONTAINED SCOPE

Consider the following snippet:

(function(){
 var numClicks = 0;
 document.addEventListener("click", function(){
 alert(++numClicks);
 }, false);
})();

Because the immediate function is executed immediately (hence its name), the click
handler is also bound right away. The important thing to note is that a closure is cre-
ated for the handler that includes numClicks, allowing the numClicks variable to persist
along with the handler, and be referenceable by the handler but nowhere else.

 This is one of the most common ways in which immediate functions are used: as
simple, self-contained wrappers for functionality. The variables needed for the unit of
functionality are trapped in the closure, but they aren’t visible anywhere else. How’s
that for modularity?
Licensed to Maxeta Technologies <account@maxetatech.com>

113Immediate functions
 But it’s important to remember that because immediate functions are functions,
they can be used in interesting ways, like this:

document.addEventListener("click", (function(){
 var numClicks = 0;
 return function(){
 alert(++numClicks);
 };
})(), false);

This is an alternative, and debatably more confusing, version of our previous snippet.
 In this case, we’re again creating an immediate function, but this time we return

a value from it: a function to serve as the event handler. Because this is just like
any other expression, the returned value is passed to the addEventListener() method.
But the inner function that we created still gets the necessary numClicks variable via
its closure.

 This technique involves a very different way of looking at scope. In many lan-
guages, you can scope things based upon the block they’re in. In JavaScript, variables
are scoped based upon the closure they’re in.

 Moreover, using this simple construct (immediate functions), we can now scope
variables to block, and sub-block, levels. The ability to scope some code to a unit as
small as an argument within a function call is incredibly powerful, and it truly shows
the flexibility of the language.

ENFORCING NAMES IN A SCOPE VIA PARAMETERS

Up until now, we’ve used immediate functions that don’t get passed any parameters.
But as they’re functions like any other, we can also use the immediate function call to
pass arguments to the immediate function that, like any other function, references
those arguments via the parameter names.

 Here’s an example:

(function(what){ alert(what); })('Hi there!');

A more practical example of using this construct is on pages that mix jQuery with
another library, such as Prototype.

 jQuery introduces the name jQuery into the global scope as the name of its primary
function. It also introduces the name $ as an alias to that function. The name $, how-
ever, is rather popular with JavaScript libraries, and Prototype uses it too. Recognizing
this, jQuery has a supported way to revert the use of $ to any other library that wants to
use it (jQuery.noConflict() if you’re curious). On such pages, we must use jQuery to
reference jQuery, while $ references Prototype. Or do we?

 We’re used to using $ for jQuery, and we’d like to be able to do so without worrying
about what’s going on in the rest of the page. This is especially true for reusable code
that could end up on many pages, of whose makeup and nature we are unaware.

 With immediate functions, we can assign the $ back to jQuery within the “bubble”
created by an immediate function. Observe the following code.
Licensed to Maxeta Technologies <account@maxetatech.com>

114 CHAPTER 5 Closing in on closures
<body>

 <script type="text/javascript">

 $ = function(){ alert('not jQuery!'); };

 (function($){

 $('img').on('click',function(event){
 $(event.target).addClass('clickedOn');
 })

 })(jQuery);

 </script>
</body>

In this example, we first redefine $ to mean something other than jQuery B. This
could also happen as a result of including Prototype on the page, or any other library
or code that usurps the $ name.

 But because we want to use the $ to refer to jQuery in a fragment of code, we
define an immediate function that defines a single parameter named $ c. Within the
function body, the parameter $ will take precedence over the global variable $. What-
ever we pass to the function will become whatever $ refers to within the function. By
passing jQuery to the immediate function e, the value of $ within the function
is jQuery.

 Note that the $ parameter becomes part of the closure of any functions created
within the function body d, including the event handler that we pass to jQuery’s on()
method. So even though the event handler is likely to execute long after the imme-
diate function has executed and been discarded, the handler can use the $ to refer
to jQuery.

 This is a technique employed by many jQuery plugin authors whose code will be
included in pages that they didn’t write. It’s unsafe to assume that $ refers to jQuery, so
they can include the plugin code inside an immediate function that lets them safely
use $ to refer to jQuery.

 Before we move on, let’s look at another example from Prototype.

KEEPING CODE READABLE WITH SHORTER NAMES

Often, we’ll have a fragment of code that makes frequent references to an object. If
the reference is long and involved, all those repeated references to the long name can
make the code difficult to read. And hard-to-read code isn’t good for anybody.

 A naïve approach might be to assign the reference to a variable with a short name
as follows:

var short = Some.long.reference.to.something;

Listing 5.16 Enforcing the use of a name within an enclosed scope

Redefines $ to be something
other than jQuery. b

The immediate function expects a
single parameter that it names $.

Within the function this parameter
overrides any use of $ in a higher scope.
 c

Inside the function we use the $ as
if it were still assigned to jQuery.
Note that we not only use the $ in
the function, we also use it in the

event handler. Even though the event
handler will be called much later, the $
parameter is bound to it by its closure.

 dIn calling the immediate
function, we pass jQuery as
the sole argument. This binds
jQuery to the $ parameter.

 e
Licensed to Maxeta Technologies <account@maxetatech.com>

115Immediate functions
But while that achieves the goal of being able to use the name short in place of
Some.long.reference.to.something in the code that follows, it needlessly introduces a
new name into the current scope, and that’s something we’re learning to avoid.

 Rather, the sophisticated functional programmer can use an immediate function
to introduce the short name into a limited scope. Here’s a quick example of doing just
that from the Prototype JavaScript library:

 (function(v) {
 Object.extend(v, {
 href: v._getAttr,
 src: v._getAttr,
 type: v._getAttr,
 action: v._getAttrNode,
 disabled: v._flag,
 checked: v._flag,
 readonly: v._flag,
 multiple: v._flag,
 onload: v._getEv,
 onunload: v._getEv,
 onclick: v._getEv,
 ...
 });
})(Element.attributeTranslations.read.values);

In this case, Prototype is extending an object with a number of new properties and
methods. In the code, a temporary variable could have been created for Ele-
ment.attributeTranslations.read.values, but instead Prototype passes it as the first
argument to an immediate function. This means that the parameter v is a reference to
this data structure referenced by this long name, and is contained within the scope of
the immediate function.

 It’s easy to see how the code is made more readable by using v, as opposed to hav-
ing every reference to v in that code be replaced with Element.attributeTransla-
tions.read.values.

 This ability to create temporary variables within a scope is especially useful once we
start to examine looping, which we’ll do without further delay.

5.6.2 Loops

Another useful application of immediate functions is the ability to solve a nasty issue
with loops and closures. Consider this common piece of problematic code:

<body>

 <div>DIV 0</div>
 <div>DIV 1</div>

 <script type="text/javascript">
 var divs = document.getElementsByTagName("div");

 for (var i = 0; i < divs.length; i++) {
 divs[i].addEventListener("click", function() {

Listing 5.17 Code in which the iterator in the closure doesn’t do what you want

Gathers up a list of all
<div> elements on the
page; two in this case.
Licensed to Maxeta Technologies <account@maxetatech.com>

116 CHAPTER 5 Closing in on closures
 alert("divs #" + i + " was clicked.");
 }, false);
 }
 </script>
</body>

Our intention is that clicking each <div> element will show its ordinal value. But when
we load the page and click on “DIV 0”, we see the display in figure 5.12.

 In listing 5.17 we encounter a common issue with closures and looping; namely
that the variable that’s being closured (i in this case) is being updated after the func-
tion is bound. This means that every bound function handler will always alert the last
value stored in i; in this case, 2.

 This is due to a fact that we discussed in section 5.2.2: closures remember references
to included variables—not just their values at the time at which they’re created. This is
an important distinction to understand, and one that trips up a lot of people.

 Not to fear, though. We can combat this closure craziness with another closure
(fighting fire with fire, so to speak) and immediate functions, as shown in the next list-
ing (changes noted in bold).

<div>DIV 0</div>
<div>DIV 1</div>

<script type="text/javascript">
 var div = document.getElementsByTagName("div");

 for (var i = 0; i < div.length; i++) (function(n){
 div[n].addEventListener("click", function(){
 alert("div #" + n + " was clicked.");
 }, false);
 })(i);
</script>

By using an immediate function as the body of the for loop (replacing the previous
block), we enforce the correct ordinal value for the handlers by passing that value into
the immediate function (and hence, the closure of the inner function). This means
that within the scope of each step of the for loop, the i variable is defined anew, giving
the closure of the click handler the value we expect.

Listing 5.18 Using an immediate function to handle the iterator properly

We expect each handler to
report the DIV number; but

see below, it’s not so!

Figure 5.12 Where did we go
wrong? Why does DIV 0 think it’s 2?
Licensed to Maxeta Technologies <account@maxetatech.com>

117Immediate functions
Running the updated page shows the expected display in figure 5.13.
 This example clearly points out how we can control the scope of variables and val-

ues using immediate functions and closures. Let’s see how that can help us be good
on-page citizens.

5.6.3 Library wrapping

Another important use of the fine-grained control over scoping that closures and
immediate functions give us is an important one to JavaScript library development.
When developing a library, it’s incredibly important that we don’t pollute the global
namespace with unnecessary variables, especially ones that are only temporarily used.

 To this end, the concept of closures and immediate functions is especially useful,
helping us to keep as much of the libraries as private as possible, and to only selec-
tively introduce variables into the global namespace. The jQuery library takes great
care to heed this principle, completely enclosing all of its functionality and only intro-
ducing the variables it needs, like jQuery, as shown here:

 (function(){
 var jQuery = window.jQuery = function(){
 // Initialize
 };

 // ...
})();

Note that there’s a double assignment performed, completely intentionally. First, the
jQuery constructor (as an anonymous function) is assigned to window.jQuery, which
introduces it as a global variable.

 But that doesn’t guarantee that it will stay that way; it’s completely within the
realms of possibility that code outside our control may change or remove the variable.
To avoid that problem, we assign it to a local variable, jQuery, to enforce it as such with
the scope of the immediate function.

 This means that we can use the name jQuery throughout our library code, while
externally anything could have happened to the global variable. We won’t care; within
the world we created via the outer immediate function, the name jQuery means only
what we want it to mean. Because all of the functions and variables that are required

Figure 5.13 That’s more like it!
Each element now knows its
own ordinal.
Licensed to Maxeta Technologies <account@maxetatech.com>

118 CHAPTER 5 Closing in on closures
by the library are nicely encapsulated, it ends up giving the end user a lot of flexibility
in how they wish to use it.

 But that isn’t the only way in which that type of definition could be implemented;
another is shown here:

var jQuery = (function(){
 function jQuery(){
 // Initialize
 }

 // ...

 return jQuery;
})();

This code has the same effect as that shown previously, just structured in a different
manner. Here we define a jQuery function within our anonymous scope, use it freely
within that scope, then return it such that it’s assigned to a global variable, also named
jQuery. Oftentimes this particular technique is preferred if you’re only exporting a sin-
gle variable, as the intention of the assignment is somewhat clearer.

 In the end, the exact formats and structures used are left to developer preference,
which is good, considering that the JavaScript language gives you all the power you’ll
need to structure any particular application to your own predilections.

5.7 Summary
In this chapter we dove into how closures, a key concept of functional programming,
work in JavaScript:

■ We started with the basics, looking at how closures are implemented, and then
at how to use them within an application. We looked at a number of cases
where closures were particularly useful, including in the definition of private
variables and in the use of callbacks.

■ We then explored a number of advanced concepts in which closures helped to
sculpt the JavaScript language, including forcing function context, partially
applying functions, and overriding function behavior. We then did an in-depth
exploration of immediate functions, which, as we learned, have the power to let
us exhibit fine-grained control over variable scoping.

■ In total, understanding closures will be an invaluable asset when developing
complex JavaScript applications and will aid in solving a number of common
problems that we’ll inevitably encounter.

In this chapter’s example code, we lightly introduced the concept of prototypes. Now
it’s time to dig into prototypes in earnest. After at least a short break to let your mind
absorb what we’ve covered so far, read on!
Licensed to Maxeta Technologies <account@maxetatech.com>

Object-orientation
with prototypes
Now that we’ve learned how functions are first-class objects in JavaScript, and how
closures make them incredibly versatile and useful, we’re ready to tackle another
important aspect of functions: function prototypes.

 Those already somewhat familiar with JavaScript prototypes might think of
them as being closely related to objects, but once again it’s all about functions. Pro-
totypes are a convenient way to define types of objects, but they’re actually a feature
of functions.

 Prototypes are used throughout JavaScript as a convenient means of defining
properties and functionality that will be automatically applied to instances of
objects. Once defined, the prototype’s properties become properties of instanti-
ated objects, serving as a blueprint of sorts for the creation of complex objects.

In this chapter we discuss
■ Using functions as constructors
■ Exploring prototypes
■ Extending objects with prototypes
■ Avoiding common gotchas
■ Building classes with inheritance
119

Licensed to Maxeta Technologies <account@maxetatech.com>

120 CHAPTER 6 Object-orientation with prototypes
 In other words, they serve a similar purpose to that of classes in classical object-
oriented languages. Indeed, the predominant use of prototypes in JavaScript is in pro-
ducing a classical style of object-oriented code and inheritance.

 Let’s start exploring how.

6.1 Instantiation and prototypes
All functions have a prototype property that initially references an empty object. This
property doesn’t serve much purpose until the function is used as a constructor. We saw
in chapter 3 that using the new keyword to invoke a function calls the function as a
constructor with a newly instantiated and empty object as its context.

 As object instantiation is a large part of what makes constructors useful, let’s take a
little time to make sure we truly understand it.

6.1.1 Object instantiation

The simplest way to create a new object is with a statement like this:

var o = {};

This creates a new and empty object, which we can then populate with properties via
assignment statements:

var o = {};
o.name = 'Saito';
o.occupation = 'marksman';
o.cyberizationLevel = 20;

But those coming from an object-oriented background might miss the encapsulation
and structuring that comes with the concept of a class constructor: a function that
serves to initialize the object to a known initial state. After all, if we’re going to create
multiple instances of the same type of object, assigning the properties individually is
not only tedious but also highly error-prone. We’d like to have a means to consolidate
the set of properties and methods for a class of objects in one place.

 JavaScript provides such a mechanism, though in a very different form than
most other languages. Like object-oriented languages such as Java and C++, Java-
Script employs the new operator to instantiate new objects via constructors, but
there’s no class definition in JavaScript. Rather, the new operator, applied to a con-
structor function (as we observed in chapters 3 and 4), triggers the creation of a
newly allocated object.

 What we didn’t learn in the previous chapters was that the prototype is used as a
sort of blueprint. Let’s see how that works.

PROTOTYPES AS OBJECT BLUEPRINTS

Let’s examine a simple case of using a function, both with and without the new opera-
tor, and see how the prototype property provides properties for the new instance. Con-
sider the following code.
Licensed to Maxeta Technologies <account@maxetatech.com>

121Instantiation and prototypes
<script type="text/javascript">

 function Ninja(){}

 Ninja.prototype.swingSword = function(){
 return true;
 };

 var ninja1 = Ninja();
 assert(ninja1 === undefined,
 "No instance of Ninja created.");

 var ninja2 = new Ninja();
 assert(ninja2 &&
 ninja2.swingSword &&
 ninja2.swingSword(),
 "Instance exists and method is callable.");

</script>

In this code, we define a seemingly do-nothing function named Ninja() B that we’ll
invoke in two ways: as a “normal” function d, and as a constructor e. After the func-
tion is created, we add a method, swingSword(), to its prototype c. Then we put the
function through its paces.

 First, we call the function normally d and store its result in variable ninja1. Look-
ing at the function body B, we see that it returns no value, so we’d expect ninja1 to
test as undefined, which we assert to be true. As a simple function, Ninja() doesn’t
appear to be all that useful.

 Then we call the function via the new operator, invoking it as a constructor, and
something completely different happens. The function is once again called, but this
time a newly allocated object has been created and set as the context of the function.
The result returned from the new operator is a reference to this new object. We test for
two things: that ninja2 has a reference to the newly created object, and that that object
has a swingSword() method that we can call.

 This shows that the function’s prototype serves as a sort of blueprint for the new object
when the function is used as a constructor. The results of the tests are shown in figure 6.1.

Listing 6.1 Creating a new instance with a prototyped method

Defines a function that does
nothing and returns nothing.

 b

Adds method to the
prototype of the function. c

Calls the function as a function. Testing
confirms that nothing at all seems to happen. d

Calls the function as a constructor.
Testing confirms that not only is

new object instance created, it
possesses the method from the

prototype of the function.

 e

Figure 6.1 A prototype lets us
predefine properties, including methods,
to be automatically applied to new
object instances.
Licensed to Maxeta Technologies <account@maxetatech.com>

122 CHAPTER 6 Object-orientation with prototypes
Note that we didn’t do anything overt in the constructor to make this happen. The
swingSword() method is attached to the new object simply by adding it to the construc-
tor’s prototype property.

 Also note that we said attached rather than added. Let’s find out why.

INSTANCE PROPERTIES

When the function is called as a constructor via the new operator, its context is defined
as the new object instance. This means that in addition to attaching properties via the
prototype, we can initialize values within the constructor function via the this parame-
ter. Let’s examine the creation of such instance properties in the next listing.

<script type="text/javascript">

 function Ninja(){

 this.swung = false;

 this.swingSword = function(){
 return !this.swung;
 };
 }

 Ninja.prototype.swingSword = function(){
 return this.swung;
 };

 var ninja = new Ninja();
 assert(ninja.swingSword(),
 "Called the instance method, not the prototype method.");

</script>

Listing 6.2 is very similar to the previous example in that we define a method by add-
ing it to the prototype property c of the constructor. But we also add an identically
named method within the constructor function itself B. The two methods are
defined to return opposing results so we can tell which will be called.

NOTE This isn’t anything we’d actually advise doing in real-world code;
quite the opposite. We’re doing it here just to demonstrate the precedence
of initializers.

When we run the test d by loading the page into the browser, we see that the test
passes! This shows that instance members created inside a constructor will occlude
properties of the same name defined in the prototype.

 The precedence of the initialization operations is important and goes as follows:

1 Properties are bound to the object instance from the prototype.
2 Properties are added to the object instance within the constructor function.

Listing 6.2 Observing the precedence of initialization activities

Creates an instance
variable that holds a

Boolean value
initialized to false.

Creates an instance method
that returns the inverse of the
swung instance variable value.

 b

Defines a prototype method with the
same name as the instance method. Which
will take precedence? c

Constructs a Ninja instance for testing and asserts
that the instance method will override prototype
method of the same name. Will the test pass?

 d
Licensed to Maxeta Technologies <account@maxetatech.com>

123Instantiation and prototypes
Binding operations within the constructor always take precedence over those in the
prototype. Because the this context within the constructor refers to the instance itself,
we can perform initialization actions in the constructor to our heart’s content.

 Let’s find out more about how instance properties and prototypes relate to each
other by learning how JavaScript reconciles object property references.

RECONCILING REFERENCES

A vitally important concept to understand about prototypes is how JavaScript goes
about reconciling references and how the prototype property comes into play during
this process.

 The previous examples may have led you to believe that when a new object is cre-
ated and passed to a constructor, the properties of the constructor’s prototype are cop-
ied to the object. That would certainly account for the fact that a property assigned
within the constructor body overrides the prototype value. But as it turns out, there are
some behaviors that wouldn’t make sense if this was really what was going on.

 If we were to assume that the prototype values are simply copied to the object, then
any change to the prototype made after the object was constructed would not be
reflected in the object, right? Let’s rearrange the code a bit in the following listing
and see what happens.

<script type="text/javascript">

 function Ninja(){
 this.swung = true;
 }

 var ninja = new Ninja();

 Ninja.prototype.swingSword = function(){
 return this.swung;
 };

 assert(ninja.swingSword(),
 "Method exists, even out of order.");

</script>

In this example, we define a constructor B and proceed to use it to create an object
instance c. After the instance has been created, we add a method to the prototype d.
Then we run a test to see if the change we made to the prototype after the object was
constructed takes effect.

 Our test e succeeds, showing that the assertion is true as shown in figure 6.2.
Clearly there’s more to all this than a simple copying of properties when the object
is created.

 What’s really going on is that properties in the prototype aren’t copied anywhere,
but rather, the prototype is attached to the constructed object and consulted during
the reconciling of property references made to the object.

Listing 6.3 Observing the behavior of changes to the prototype

Defines a constructor that creates a
Ninja with a single Boolean property b

Instantiates an instance of Ninja by calling the
constructor function via the new operator

 c

Adds a method to the prototype
after the object has been created d

Tests if the method
exists in the object e
Licensed to Maxeta Technologies <account@maxetatech.com>

124 CHAPTER 6 Object-orientation with prototypes
A simplified overview of the process is as follows:

1 When a property reference to an object is made, the object itself is checked to
see if the property exists. If it does, the value is taken. If not ...

2 The prototype associated with the object is located, and it is checked for the
property. If it exists, the value is taken. If not ...

3 The value is undefined.

We’ll see later on in the chapter that things get a little more complicated than this,
but this is a good enough understanding for now.

 How does all this work? Look at the diagram in figure 6.3.

Figure 6.2 Our test proves that
prototype changes are applied live!

Figure 6.3 Objects are tied to their constructors, which are in turn tied to prototypes for objects
created by the constructor.

var ninja

property constructor

Object

Constructor function

property prototype

Prototype object

Variable points to
object

property
points to constructor

property
points to prototype

object

constructor

prototype
Licensed to Maxeta Technologies <account@maxetatech.com>

125Instantiation and prototypes
Each object in JavaScript has an implicit property named constructor that references
the constructor that was used to create the object. And because the prototype is a
property of the constructor, each object has a way to find its prototype.

 Take a look at figure 6.4, which shows a capture of the JavaScript console (in
Chrome) when the code from listing 6.3 is loaded into the browser.

 When we type the reference ninja.constructor into the console, we see that it
references the Ninja() function, as we’d expect, because the object was created by
using that function as a constructor. A deeper reference to ninja.constructor
.prototype.swingSword shows how we can access prototype properties from the
object instance.

 This explains why changes to the prototype made after the object has been con-
structed take effect. The prototype is actively attached to the object, and any refer-
ences made to object properties are reconciled, using the prototype if necessary, at the
time of reference.

 These seamless “live updates” give us an incredible amount of power and extensi-
bility, to a degree that isn’t typically found in other languages. Allowing for these live
updates makes it possible for us to create a functional framework that users can
extend with further functionality, even well after objects have been instantiated.

 The relationships are shown in figure 6.5.
 In the figure, an object reference by variable ninja has properties member1 and

member2. A reference to either of these is resolved by those properties. If a property
not present in the object, in this case member3, is referenced, it’s looked for in the con-
structor’s prototype. A reference to member4 would result in undefined, as it doesn’t
exist anywhere.

 Before we move on, let’s try one more variation on this theme to drive the point
home, as shown in the following listing.

<script type="text/javascript">

 function Ninja(){
 this.swung = true;
 this.swingSword = function(){

Listing 6.4 Further observing the behavior of changes to the prototype

Figure 6.4 Inspecting the structure of an object reveals the path to its prototype.

Defines an instance method with
same name as a prototype method b
Licensed to Maxeta Technologies <account@maxetatech.com>

126 CHAPTER 6 Object-orientation with prototypes
 return !this.swung;
 };
 }

 var ninja = new Ninja();

 Ninja.prototype.swingSword = function(){
 return this.swung;
 };

 assert(ninja.swingSword(),
 "Called the instance method, not the prototype method.");

</script>

In this example, we re-introduce an instance method B with the same name as the
prototyped method c, as we did back in listing 6.2. In that example, the instance

Figure 6.5 Property references are first looked for in the object itself; if they’re not found, the
constructor’s prototype is inspected.

Defines a prototyped method with
same name as the instance method c

Tests which
method wins d

var ninja

property member1

property member2

property constructor

Object

Function

property prototype

Object

property member3

result = ninja.member1;

result = ninja.member3;

is found as a
property of the object

isn't
in the object; it's

found in the
constructor
prototype

member1

member3
Licensed to Maxeta Technologies <account@maxetatech.com>

127Instantiation and prototypes
method took precedence over the prototyped method. This time, however, the proto-
typed method is added after the constructor has been executed. Which method will
reign supreme in this case?

 Our test d shows that, even when the prototyped method is added after the
instance method has been added, the instance method takes precedence. This makes
perfect sense. The prototype is only consulted when a property reference on the
object itself fails. Because the object directly possesses a swingSword property, the pro-
totyped version doesn’t come into play, even though it was the most recent “version”
of the method created.

 The point is that property references are resolved in the object first, defaulting to
inspecting the prototype only if that fails.

 Now that we know how to instantiate objects via function constructors, let’s learn a
bit more about the nature of those objects.

6.1.2 Object typing via constructors

Although it’s great to know how JavaScript uses the prototype during the reconcilia-
tion of property references, it’s also handy for us to know which function constructed
the object instance.

 As we’ve seen, the constructor of an object is available via the constructor property.
We can refer back to the constructor at any time, possibly even using it as a form of
type checking, as shown in the next listing.

<script type="text/javascript">

 function Ninja(){}

 var ninja = new Ninja();

 assert(typeof ninja == "object",
 "The type of the instance is object.");

 assert(ninja instanceof Ninja,
 "instanceof identifies the constructor.");

 assert(ninja.constructor == Ninja,
 "The ninja object was created by the Ninja function.");

</script>

In listing 6.5 we define a constructor and create an object instance using it. Then we
examine the type of the instance using the typeof operator B. This isn’t very reveal-
ing, as all instances will be objects, thus always returning "object" as the result.
Much more interesting is the instanceof operator c, which is really helpful in that
it gives us a clear way to determine whether an instance was created by a particular
function constructor.

Listing 6.5 Examining the type of an instance and its constructor

Tests the type of ninja using
typeof. That tells us it’s an
object, but not much else.

 b

Tests the type of ninja using
instanceof. This gives us more
information—that it was
constructed from Ninja.

 c

Tests the type of ninja using the constructor reference. This
gives us an actual reference to the constructor function.
Licensed to Maxeta Technologies <account@maxetatech.com>

128 CHAPTER 6 Object-orientation with prototypes
 On top of this, we can also make use of the constructor property, that we now know
is added to all instances, as a reference back to the original function that created it.
We can use this to verify the origin of the instance (much like how we can with the
instanceof operator).

 Additionally, because this is just a reference back to the original constructor, we
can instantiate a new Ninja object using it, as shown in the next listing.

<script type="text/javascript">

 function Ninja(){}

 var ninja = new Ninja();

 var ninja2 = new ninja.constructor();

 assert(ninja2 instanceof Ninja, "It's a Ninja!");

 assert(ninja !== ninja2, "But not the same Ninja!");

</script>

We define a constructor and create an instance using that constructor. Then we use
the constructor property of the created instance to construct a second instance B.
Testing c shows that a second Ninja has been constructed and that the variable
doesn’t merely point to the same instance d.

 What’s especially interesting is that we can do this without even having access to
the original function; we can use the reference completely behind the scenes, even
if the original constructor is no longer in scope.

NOTE Although the constructor property of an object can be changed, doing
so doesn’t have any immediate or obvious constructive purpose (though one
might think of some malicious ones), as its reason for being is to inform us
from where the object was constructed. If the constructor property is overwrit-
ten, the original value will simply be lost.

That’s all very useful, but we’ve just scratched the surface of the superpowers that pro-
totypes confer on us. Now things get really interesting.

6.1.3 Inheritance and the prototype chain

There’s an additional feature of the instanceof operator that we can use to our
advantage to utilize a form of object inheritance. But in order to make use of it, we
need to understand how inheritance works in JavaScript and what role the prototype
chain plays.

 Let’s consider the example in the following listing, in which we’ll attempt to add
inheritance to an instance.

Listing 6.6 Instantiating a new object using a reference to a constructor

Constructs a second
Ninja from the first b

Proves the new
object’s Ninja-ness c

They aren’t the same
object but two
distinct instances

 d
Licensed to Maxeta Technologies <account@maxetatech.com>

129Instantiation and prototypes
<script type="text/javascript">

 function Person(){}
 Person.prototype.dance = function(){};

 function Ninja(){}

 Ninja.prototype = { dance: Person.prototype.dance };

 var ninja = new Ninja();
 assert(ninja instanceof Ninja,
 "ninja receives functionality from the Ninja prototype");
 assert(ninja instanceof Person, "... and the Person prototype");
 assert(ninja instanceof Object, "... and the Object prototype");

</script>

As the prototype of a function is just an object, there are multiple ways of copying
functionality (such as properties or methods) to effect inheritance. In this code, we
define a Person B, and then a Ninja c. And because a Ninja is clearly a person,
we want Ninja to inherit the attributes of Person. We attempt to do so in this code by
copying d the dance property of the Person prototype’s method to a similarly named
property in the Ninja prototype.

 Running our test reveals that while we may have taught the ninja to dance, we
failed to make the Ninja a Person, as shown in figure 6.6. Although we’ve taught the
Ninja to mimic the dance of a person, it hasn’t made the Ninja a Person. That’s not
inheritance—it’s just copying.

 This approach is a big old FAIL. Not much of a loss though, because by using this
approach, we’d need to copy each property of Person to the Ninja prototype individu-
ally. That’s no way to do inheritance. Let’s keep exploring.

NOTE It’s interesting to note that even without doing anything overt, all objects
are instances of Object. Execute the statement console.log({}.constructor) in a
browser’s debugger, and see what you get.

What we really want to achieve is a prototype chain so that a Ninja can be a Person, and a
Person can be a Mammal, and a Mammal can be an Animal, and so on, all the way to Object.

Listing 6.7 Trying to achieve inheritance with prototypes

Defines a dancing Person via a
constructor and its prototype b

Defines a Ninja c

Attempts to make a Ninja
a dancing Person by copying
the dance method from
the Person prototype

 d

Figure 6.6 Our Ninja isn’t really a
Person. No happy dance!
Licensed to Maxeta Technologies <account@maxetatech.com>

130 CHAPTER 6 Object-orientation with prototypes
The best technique for creating such a prototype chain is to use an instance of an
object as the other object’s prototype:

SubClass.prototype = new SuperClass();

For example,

Ninja.prototype = new Person();

This will preserve the prototype chain because the prototype of the SubClass instance
will be an instance of the SuperClass, which has a prototype with all the properties of
SuperClass, and which will in turn have a prototype pointing to an instance of its super-
class, and on and on.

 Let’s change the code of listing 6.7 slightly to use this technique in the next listing.

<script type="text/javascript">

 function Person(){}
 Person.prototype.dance = function(){};

 function Ninja(){}

 Ninja.prototype = new Person();

 var ninja = new Ninja();
 assert(ninja instanceof Ninja,
 "ninja receives functionality from the Ninja prototype");
 assert(ninja instanceof Person, "... and the Person prototype");
 assert(ninja instanceof Object, "... and the Object prototype");
 assert(typeof ninja.dance == "function", "... and can dance!")

</script>

The only change we made to the code was to use an instance of Person as the pro-
totype for Ninja B. Running the tests shows that we’ve succeeded, as shown in
figure 6.7.

 The very important implications of this are that when we perform an instanceof
operation, we can determine whether the function inherits the functionality of any
object in its prototype chain.

Listing 6.8 Achieving inheritance with prototypes

Makes a Ninja a Person by
making the Ninja prototype
an instance of Person.

 b

Figure 6.7 Our Ninja is a Person! Let
the victory dance begin.
Licensed to Maxeta Technologies <account@maxetatech.com>

131Instantiation and prototypes
NOTE Another technique that may have occurred to you, and that we advise
strongly against, is to use the Person prototype object directly as the Ninja proto-
type, like this: Ninja.prototype = Person.prototype;. By doing this, any changes to
the Ninja prototype will also change the Person prototype because they’re the
same object, and that’s bound to have undesirable side effects.

An additional happy side effect of doing prototype inheritance in this manner is that
all inherited function prototypes will continue to live-update. The manner in which
the prototype chain is applied for our example is shown in figure 6.8.

 It’s important to note that our object also has properties that are inherited from
the Object prototype.

var ninja

property constructor

instanceof Ninja

Ninja()

property prototype

property constructor

instanceof Person

Person()

property prototype

function dance()

The dance() method is

inherited by all instances in the

prototype chain

Figure 6.8 The prototype chain through which properties are reconciled for the dancing ninja
Licensed to Maxeta Technologies <account@maxetatech.com>

132 CHAPTER 6 Object-orientation with prototypes

Cal
call
fun
for
arr
ent
All native JavaScript object constructors (such as Object, Array, String, Number, RegExp,
and Function) have prototype properties that can be manipulated and extended,
which makes sense, as each of those object constructors is itself a function. This
proves to be an incredibly powerful feature of the language. Using it, we can
extend the functionality of the language itself, introducing new or missing pieces of
the language.

NOTE As with most advanced techniques, this can be a double-edged sword
that needs to be wielded with care. A good summary is available on the Perfec-
tion Kills blog (http://perfectionkills.com/extending-built-in-native-objects-
evil-or-not/).

One such case where this would be quite useful is in anticipating some of the features
of future versions of JavaScript. For example, JavaScript 1.6 introduced a couple of
useful helper methods, including some for arrays.

 One such method is forEach(), which allows us to iterate over the entries in an
array, calling a function for every entry. This can be especially handy for situations
where we want to plug in different pieces of functionality without changing the overall
looping structure.

 Although this method has made its appearance in most modern browsers, it
doesn’t exist in all browsers that currently have significant use and that we may need
to support. We can implement this functionality for older browsers, eliminating the
need to worry about it in the rest of our code.

 The following listing shows a possible implementation of forEach() that we could
use to fill the gap in older browsers.

<script type="text/javascript">

 if (!Array.prototype.forEach) {

 Array.prototype.forEach = function(callback, context) {
 for (var i = 0; i < this.length; i++) {
 callback.call(context || null, this[i], i, this);
 }
 };
 }

 ["a", "b", "c"].forEach(function(value, index, array) {
 assert(value,
 "Is in position " + index + " out of " +
 (array.length - 1));
 });

</script>

Before we stomp on an implementation that might already be there, we check to
make sure that Array doesn’t already have a forEach() method defined B, and we

Listing 6.9 A future-proof JavaScript 1.6 forEach() method implementation

Tests for the pre-existence of the
method. We don’t want to redefine it in
browsers that provide it for us.

 b

Adds the method to
the Array prototype.
After this, it’s a
method of all arrays.

 cls the
back
ction
 each
ay
ry.

 d

Puts our
implementation

through its paces.
Licensed to Maxeta Technologies <account@maxetatech.com>

http://perfectionkills.com/extending-built-in-native-objects-evil-or-not/
http://perfectionkills.com/extending-built-in-native-objects-evil-or-not/

133Instantiation and prototypes
skip the whole thing if it does. This makes the code future-compatible, because
when it executes in an environment where the method is defined, it will defer to the
native method.

 If we determine that the method doesn’t exist, we go ahead and add it to the Array
prototype c, simply looping through the array using a traditional for loop and call-
ing the callback method for each entry d. The values passed to the callback are the
entry, the index, and the original array. Note that the expression context || null pre-
vents us from passing a possible undefined value to call().

 Because all the built-in objects, like Array, include prototypes, we have all the
power necessary to extend the language to our desires. But an important point to
remember when implementing properties or methods on native objects is that intro-
ducing them is every bit as dangerous as introducing new variables into the global
scope. Because there’s only ever one instance of a native object prototype, there’s a
significant possibility that naming collisions will occur.

 Also, when implementing features on native prototypes that are forward-looking
(such as our forEach() implementation) there’s a danger that our anticipated imple-
mentation may not exactly match the final implementation, causing issues to occur
when a browser finally does implement the method. We should always take great care
when treading in these waters.

 We’ve seen that we can use prototypes to augment the native JavaScript objects;
now let’s turn our attention to the DOM.

6.1.4 HTML DOM prototypes

A fun feature in modern browsers, including Internet Explorer 8+, Firefox, Safari, and
Opera, is that all DOM elements inherit from an HTMLElement constructor. By making
the HTMLElement prototype accessible, the browsers provide us with the ability to extend
any HTML node of our choosing.

 Let’s explore that in the next listing.

<div id="parent">
 <div id="a">I'm going to be removed.</div>
 <div id="b">Me too!</div>
</div>

<script type="text/javascript">
 HTMLElement.prototype.remove = function() {
 if (this.parentNode)
 this.parentNode.removeChild(this);
 };

 var a = document.getElementById("a");
 a.parentNode.removeChild(a);

Listing 6.10 Adding a new method to all HTML elements via the
HTMLElement prototype

Adds a new method to all
elements by adding it to the
HTMLElement prototype

 b

Code that does it the
old-fashioned way c
Licensed to Maxeta Technologies <account@maxetatech.com>

134 CHAPTER 6 Object-orientation with prototypes
 document.getElementById("b").remove();

 assert(!document.getElementById("a"),"a is gone.");
 assert(!document.getElementById("b"),"b is gone too.");
</script>

In this code, we add a new remove() method to all DOM elements by augmenting the
prototype of the base HTMLElement constructor B. Then we remove element a using
the native means c for comparison, and then we remove b using our new method d.
In both cases, we assert that the elements are removed from the DOM.

TIP More information about this particular feature can be found in the
HTML5 specification at www.whatwg.org/specs/web-apps/current-work/
multipage/section-elements.html.

One JavaScript library that makes very heavy use of this feature is the Prototype
library, which adds much functionality to existing DOM elements, including the ability
to inject HTML and manipulate CSS.

 The most important thing to realize, when working with these HTMLElement pro-
totypes, is that they don’t exist in versions of Internet Explorer prior to IE 8. If
older versions of IE aren’t a target platform for you, then these features could serve
you well.

 Another point that we need to be aware of is whether HTML elements can be
instantiated directly from their constructor function. We might consider doing some-
thing like this:

var elem = new HTMLElement();

But that doesn’t work at all. Even though browsers expose the root constructor and
prototype, they selectively disable the ability to actually call the constructor (presum-
ably to limit element-creation for internal use).

 Save for the gotcha that this feature presents with regards to platform compatibil-
ity with older browsers, if you want to attach methods to DOM elements, this feature’s
benefits with respect to clean code can be quite dramatic.

NOTE This technique isn’t without its detractors. They, with good reason, feel
that modifying the actual DOM elements is too intrusive and can introduce
instability into a page, as other components being used on the page may be
unaware of the changes and might be tripped up by any changes made to the
elements. It’s best to tread lightly if you choose to employ this technique.
Adding methods is usually fairly benign, but changing the way that existing
code acts should be considered very carefully.

And speaking of gotchas...

Code that uses the new
method, which is both
shorter and clearer

 d
Licensed to Maxeta Technologies <account@maxetatech.com>

www.whatwg.org/specs/web-apps/current-work/multipage/section-elements.html
www.whatwg.org/specs/web-apps/current-work/multipage/section-elements.html

135The gotchas!
6.2 The gotchas!
As with most things in life, JavaScript has several gotchas associated with prototypes,
instantiation, and inheritance. Some of them can be worked around, but a number of
them will require a dampening of our excitement.

 Let’s take a look at some of them.

6.2.1 Extending Object

Perhaps the most egregious mistake that we can make with prototypes is to extend the
native Object.prototype. The difficulty is that when we extend this prototype, all
objects receive those additional properties. This can be especially problematic when
we iterate over the properties of the object and these new properties appear, poten-
tially causing all sorts of unexpected behavior. Let’s illustrate that with an example in
Listing 6.11.

 Let’s say that we wanted to do something seemingly innocuous, such as adding a
keys() method to Object that would return an array of all the names (keys) of the
properties in the object.

<script type="text/javascript">

 Object.prototype.keys = function() {
 var keys = [];
 for (var p in this) keys.push(p);
 return keys;
 };

 var obj = { a: 1, b: 2, c: 3 };

 assert(obj.keys().length == 3,
 "There are three properties in this object.");

</script>

First we define the new method B, which simply iterates over the properties and col-
lects the keys into an array, which we return. We then define a test subject with three
properties c, and then test that we get a three-element array as a result d.

 But the test fails, as shown in figure 6.9.
 What went wrong, of course, is that in adding the keys() method to Object, we

introduced another property that will appear on all objects and that is included in the
count. This affects all objects and will force any code to have to account for the extra
property. This could break code that’s based upon perfectly reasonable assumptions
made by page authors. This is obviously unacceptable. Don’t do it!

 There still exists the problem that someone else might do this and trip up our code.
What can we do about that? As it turns out, there is a workaround that we can use to
protect ourselves from these well-meaning but misguided coders.

Listing 6.11 Unexpected behavior of adding extra properties to the Object prototype

Defines a new method in
the Object prototype b

Creates an object to serve
as a test subject c

Tests the new method
by checking the length
of the array

 d
Licensed to Maxeta Technologies <account@maxetatech.com>

136 CHAPTER 6 Object-orientation with prototypes
JavaScript provides a method called hasOwnProperty(), which can be used to determine
whether properties are actually defined on an object instance versus imported from
a prototype.

 Let’s observe its use in the next listing by modifying the code from listing 6.11.

<script type="text/javascript">

 Object.prototype.keys = function() {
 var keys = [];
 for (var i in this)
 if (this.hasOwnProperty(i)) keys.push(i);
 return keys;
 };

 var obj = { a: 1, b: 2, c: 3 };

 assert(obj.keys().length == 3,
 "There are three properties in this object.");

</script>

Our redefined method ignores non-instance properties B so that this time the
test c succeeds.

 But just because it’s possible for us to work around this issue doesn’t mean that it
should be abused and become a burden for the users of our code. Looping over the
properties of an object is an incredibly common behavior, but it’s uncommon for peo-
ple to use hasOwnProperty() within their own code—many page authors probably don’t
even know of its existence. Generally, we should use such workarounds to protect our-
selves from transgressing code, but we should never expect other authors to have to
protect themselves from ours.

 Now we’ll take a look at another pitfall that could trap us.

6.2.2 Extending Number

Except for Object, as we examined in the previous section, it’s generally safe to extend
most native prototypes. But one other problematic native is Number.

Listing 6.12 Using the hasOwnProperty() method to tame Object prototype extensions

Figure 6.9 Whoa! We screwed up a
fundamental assumption of objects.

Ignores prototyped properties
by using hasOwnProperty() to
skip over properties from the
prototype b

Tests the method by
counting entries c
Licensed to Maxeta Technologies <account@maxetatech.com>

137The gotchas!
 Due to how numbers, and properties of numbers, are parsed by the JavaScript
engine, some results can be rather confusing, as in the following listing.

<script type="text/javascript">

 Number.prototype.add = function(num){
 return this + num;
 };

 var n = 5;
 assert(n.add(3) == 8,
 "It works when the number is in a variable.");

 assert((5).add(3) == 8,
 "Also works if a number is wrapped in parentheses.");

 assert(5.add(3) == 8, "What about a simple literal?");

</script>

Here we define a new add() method on Number B that will take its argument, add it to
the number’s value, and return the result. Then we test the new method using various
number formats:

■ With the number in a variable c
■ With the number as an expression d
■ Directly, with the number as a numeric literal e

But when we try to load the page into a browser, the page won’t even load, as shown in
figure 6.10. It turns out that the syntax parser can’t handle the literal case.

 This can be a frustrating issue to deal with, as the logic behind it can be rather
obtuse. There have been libraries that have continued to include Number prototype
functionality, regardless of these issues, simply stipulating how they should be used
(Prototype being one of them). That’s certainly an option, albeit one that requires the
library to explain the issues with good documentation and clear tutorials. In general,
it’s best to avoid mucking around with the Number prototype unless you really need to.

 Now let’s look at some issues we can encounter when we subclass, rather than aug-
ment, native objects.

6.2.3 Subclassing native objects

Another tricky point that we might stumble across concerns the subclassing of native
objects. The one object that’s quite simple to subclass is Object (as it’s the root of all
prototype chains to begin with).

 But once we start wanting to subclass other native objects, the situation becomes
less clear-cut. For example, with Array, everything might seem to work as we expect it to,
but let’s take a look at the following code.

Listing 6.13 Adding a method to the Number prototype

Defines a new method on
the Number prototype b

Tests the method
using a variable c

Tests the method using
an expression format d

Tests method using a
literal format. We’d
expect all of these
tests to pass, no?

 e
Licensed to Maxeta Technologies <account@maxetatech.com>

138 CHAPTER 6 Object-orientation with prototypes
<script type="text/javascript">

 function MyArray() {}

 MyArray.prototype = new Array();

 var mine = new MyArray();
 mine.push(1, 2, 3);

 assert(mine.length == 3,
 "All the items are in our sub-classed array.");
 assert(mine instanceof Array,
 "Verify that we implement Array functionality.");

</script>

We subclass Array with a new constructor of our own, MyArray(), and it all works fine and
dandy, unless, that is, you try to load this into Internet Explorer. The length property is
rather special and has a close relationship to the numeric indices of the Array object; IE’s
implementation doesn’t react well to us mucking around with length.

NOTE More info on all of this with relation to ECMAScript 5 can be found on
the Perfection Kills blog at perfectionkills.com/how-ecmascript-5-still-does-not-
allow-to-subclass-an-array/.

When faced with such situations, it’s a better strategy to implement individual pieces
of functionality from native objects, rather than attempt to subclass them completely.
Let’s take a look at this approach in the next listing.

Listing 6.14 Subclassing the Array object

Figure 6.10 When tests won’t even load, we know there’s a big problem.
Licensed to Maxeta Technologies <account@maxetatech.com>

139The gotchas!
<script type="text/javascript">

 function MyArray() {}
 MyArray.prototype.length = 0;

 (function() {
 var methods = ['push', 'pop', 'shift', 'unshift',
 'slice', 'splice', 'join'];

 for (var i = 0; i < methods.length; i++) (function(name) {
 MyArray.prototype[name] = function() {
 return Array.prototype[name].apply(this, arguments);
 };
 })(methods[i]);
 })();

 var mine = new MyArray();
 mine.push(1, 2, 3);
 assert(mine.length == 3,
 "All the items are on our sub-classed array.");
 assert(!(mine instanceof Array),
 "We aren't subclassing Array, though.");

</script>

In listing 6.15 we define a new constructor for a “class” named MyArray and give it its
own length property B. Then, rather than trying to subclass Array, which we’ve
already learned won’t work across all browsers, we use an immediate function c to
add selected methods from Array to our class using the apply() trick that we learned
back in chapter 4. Note the use of the array of method names to keep things tidy and
easy to extend.

 The only property that we had to implement ourselves is the length property
because that’s the one property that must remain mutable—the feature that Internet
Explorer doesn’t provide.

 Now let’s see what we can do about a common problem that people trying to use
our code might run into.

6.2.4 Instantiation issues

We’ve already noted that functions can serve a dual purpose, as “normal” functions
and as constructors. Because of this, it may not always be clear to the users of our code
which is which.

 Let’s start by looking at a simple case of what happens when someone gets it
wrong, as shown in the following listing.

<script type="text/javascript">

 function User(first, last){

Listing 6.15 Simulating Array functionality but without the true subclassing

Listing 6.16 The result of leaving off the new operator from a function call

Defines a new “class” with a
prototyped length property b

Copies selected array
functionality c

Tests the
new “class”

Defines a User class with
a name property

 b
Licensed to Maxeta Technologies <account@maxetatech.com>

140 CHAPTER 6 Object-orientation with prototypes
 this.name = first + " " + last;
 }

 var user = User("Ichigo", "Kurosaki");

 assert(user, "User instantiated");

 assert(user.name == "Ichigo Kurosaki",
 "User name correctly assigned");

</script>

In the code, we define a User class B (yeah, we know it’s not really a “class” as defined
by other object-oriented languages, but that’s what people tend to call it, so we’ll go
with the flow) whose constructor accepts a first and last name and concatenates them
to form a full name, which gets stored in the name property.

 We then create an instance of the class in the user variable c and test that the
object was instantiated d and that the constructor performed correctly e.

 But things go horribly awry when we try it out, as shown in figure 6.11.
 The test reveals that the first test fails, indicating that the object wasn’t even instan-

tiated, which causes the second test to throw an error.
 On a quick inspection of the code, it may not have been immediately obvious that

the User() function is actually something that’s meant to be called with the new opera-
tor, or maybe we just slipped up and forgot. In either case, the absence of the new oper-
ator caused the function to be called in a normal fashion, not as a constructor, and
without the instantiation of a new object. A novice user might easily fall into this trap,
trying to call the function without the operator, causing bafflingly unexpected results
(for example, user would be undefined).

NOTE You may have noticed that since the beginning of this book, we’ve
used a naming convention in which some functions start with a lowercase let-
ter and others start with an uppercase character. As noted in the previous chap-
ters, this is a common convention in which functions serving as constructors use

Creates a test user, passing in
a sample name c

Tests that the object
was instantiated d

Tests that the constructor
properly assigned the name e

Figure 6.11 Our object didn’t even get instantiated.
Licensed to Maxeta Technologies <account@maxetatech.com>

141The gotchas!
an uppercase opening character, and non-constructor functions don’t. More-
over, constructors tend to be nouns that identify the “class” that they’re con-
structing: Ninja, Samurai, Tachikoma and so on, whereas normal functions are
named as verbs, or verb/object pairs, that describe what they do: throw-
Shuriken, swingSword, hideBehindAPlant.

More than merely causing unexpected errors, when a function meant to be called as a
constructor isn’t, it can have subtle side effects such as polluting the current scope
(frequently the global namespace), causing even more unexpected results. For exam-
ple, inspect this code.

<script type="text/javascript">

 function User(first, last){
 this.name = first + " " + last;
 }

 var name = "Rukia";

 var user = User("Ichigo", "Kurosaki");

 assert(name == "Rukia",
 "Name was set to Rukia.");

</script>

This code is similar to that of the previous example, except that this time there hap-
pens to be a global variable named name in the global namespace B. It makes the
same mistake c as the previous example: forgetting to use new.

 But this time we don’t have a test that catches that mistake. Rather, the test we have
shows that the value of the global name variable has been overwritten d, as it fails when
executed. Doh!

 To find out why, look at the code of the constructor. When called as a constructor,
the context of the function invocation is the newly allocated object. But what is the
context when called as a normal function? Recall from chapter 3 that it’s the global
scope, which means that the reference this.name refers not to the name property of a
newly allocated object, but to the name variable of the global scope.

 This can result in a debugging nightmare. The developer may try to interact with
the name variable again (being unaware of the error that occurred from misusing the
User function) and be forced to dance down the horrible nondeterministic wormhole
that’s presented to them (why is the value of their variable being pulled out from
underneath their feet?).

 As JavaScript ninjas, we may want to be sensitive to the needs of our user base, so
let’s ponder what we can do about the situation.

 In order to do anything about it, we need a way to determine when the situation
comes up in the first place. Is there a way that we can determine whether a function that
we intend to be used as a constructor is being incorrectly called? Consider the next
code listing.

Listing 6.17 Accidentally introducing a variable into the global namespace

Creates a global
variable b

Calls the constructor
incorrectly again c

Tests the global
variable d
Licensed to Maxeta Technologies <account@maxetatech.com>

142 CHAPTER 6 Object-orientation with prototypes
<script type="text/javascript">

 function Test() {
 return this instanceof arguments.callee;
 }

 assert(!Test(), "We didn't instantiate, so it returns false.");
 assert(new Test(), "We did instantiate, returning true.");

</script>

Recall a few important concepts:

■ We can get a reference to the currently executing function via arguments.callee
(we learned this in chapter 4).

■ The context of a “regular” function is the global scope (unless someone did
something to make it not so).

■ The instanceof operator for a constructed object tests for its constructor.

Using these facts, we can see that the expression,

this instanceof arguments.callee

will evaluate to true when executed within a constructor, but false when executed
within a regular function.

 This means that, within a function that we intend to be called as a constructor, we
can test to see if someone called us without the new operator. Neat! But what do we do
about it?

 If we weren’t ninjas, we might just throw an error telling the user to do it right next
time. But we’re better than that. Let’s see if we can fix the problem for them. Consider
the changes to the User constructor shown in the next listing.

<script type="text/javascript">

 function User(first, last) {
 if (!(this instanceof arguments.callee)) {
 return new User(first,last);
 }
 this.name = first + " " + last;
 }

 var name = "Rukia";

 var user = User("Ichigo", "Kurosaki");

 assert(name == "Rukia","Name was set to Rukia.");
 assert(user instanceof User, "User instantiated");
 assert(user.name == "Ichigo Kurosaki",
 "User name correctly assigned");

</script>

Listing 6.18 Determining whether we’re called as a constructor

Listing 6.19 Fixing things on the caller’s behalf

Fixes things up if we determine that
we were called incorrectly by calling
ourselves in the correct manner

 b

Calls the constructor
incorrectly c

Verifies that
the fix works d
Licensed to Maxeta Technologies <account@maxetatech.com>

143Writing class-like code
By using the expression we developed in listing 6.18 to determine whether the user
has called us incorrectly, we instantiate a User ourselves B and return it as the result of
the function. The outcome is that, regardless of whether the caller invokes us as a nor-
mal function c or not, they end up with a User instance, which our tests d verify.
Now that’s user-friendly! Who says ninjas are mean?

 But before we pat ourselves on the back too hard, we need to stop and wonder if
this is the right thing to do. Here are some things we should ponder:

■ We learned in chapter 4 that the callee property is deprecated in future ver-
sions of JavaScript and prohibited in strict mode. This workaround is only possi-
ble in environments where strict mode isn’t intended to ever be used. And
going forward, why would we not want to use strict mode?

■ Is this really a good coding practice? It’s a neat technique, but its “goodness”
could be debatable.

■ Can we ascertain with 100% certainty that we know the user’s intentions? Are
we acting with hubris?

Ninjas need to think of such matters. Remember, just because we can figure out a
clever way to do something doesn’t always mean that we should.

 OK, enough of the problems. Let’s take a look at how we can use these newfound
powers to write more class-like code.

6.3 Writing class-like code
While it’s great that JavaScript lets us use a form of inheritance via prototypes, a com-
mon desire for many developers, especially those from a classical object-oriented
background, is a simplification or abstraction of JavaScript’s inheritance system into
one that they’re more familiar with.

 This inevitably leads us toward the realm of classes; that is, what a typical object-
oriented developer would expect, even though JavaScript doesn’t support classical
inheritance natively.

 Generally there is a handful of features that such developers crave:

■ A system that trivializes the syntax of building new constructor functions and
prototypes

■ An easy way to perform prototype inheritance
■ A way of accessing methods overridden by the function’s prototype

There are a number of existing JavaScript libraries that simulate classical inheritance,
but two of them stand above the others: the implementations within base2 and Proto-
type. Although they each contain a number of advanced features, their object-
oriented core is an important part of these libraries. We’ll distill what they offer and
come up with a proposed syntax that will make things a tad more natural for classically
trained, object-oriented developers.

 The following listing shows an example of a syntax that could achieve the preced-
ing goals.
Licensed to Maxeta Technologies <account@maxetatech.com>

144 CHAPTER 6 Object-orientation with prototypes
<script type="text/javascript">
 var Person = Object.subClass({
 init: function(isDancing) {
 this.dancing = isDancing;
 },
 dance: function() {
 return this.dancing;
 }
 });

 var Ninja = Person.subClass({
 init: function() {
 this._super(false);
 },
 dance: function() {
 // Ninja-specific stuff here
 return this._super();
 },
 swingSword: function() {
 return true;
 }
 });

 var person = new Person(true);
 assert(person.dance(),
 "The person is dancing.");

 var ninja = new Ninja();
 assert(ninja.swingSword(),
 "The sword is swinging.");
 assert(!ninja.dance(),
 "The ninja is not dancing.");

 assert(person instanceof Person,
 "Person is a Person.");
 assert(ninja instanceof Ninja &&
 ninja instanceof Person,
 "Ninja is a Ninja and a Person.");

</script>

There are a number of important things to note about this example:

■ Creating a new “class” is accomplished by calling a subClass() method of the
existing constructor function for the superclass, as we did here by creating a
Person class from Object B and creating a Ninja class from Person c.

■ We wanted the creation of a constructor to be simple. In our proposed syntax,
we simply provide an init() method for each class, as we did for Person and
for Ninja.

■ All our “classes” eventually inherit from a single ancestor: Object. Therefore, if
we want to create a brand new class, it must be a subclass of Object or a class that
inherits from Object in its class hierarchy (completely mimicking the current
prototype system).

Listing 6.20 An example of somewhat classical-style inheritance syntax

Creates a Person class as a
subclass of Object by using a
subclass() method that we’ll
end up implementing

 b

Creates the Ninja class by
subclassing Person c

We need a way to call the
superclass constructor—here’s
how we’ll do it

 d

Tests the Person class by creating an
instance and seeing if it dances

Tests the Ninja class by creating
an instance and checking that it

has both the swinging method
and the inherited dancing method

Performs instanceof tests
to test the class hierarchy
Licensed to Maxeta Technologies <account@maxetatech.com>

145Writing class-like code
■ The most challenging aspect of this syntax is enabling access to overridden meth-
ods with their context properly set. We can see this with the use of this._super(),
calling the original init() d and dance() methods of the Person superclass.

Proposing a syntax that we’d like to use to accomplish an inheritance scheme was the
easy part. Now we need to implement it.

 The code in listing 6.21 enables the notion of “classes” as a structure, maintains
simple inheritance, and allows for the supermethod calling. Be warned that this is
pretty involved code—but we’re all here to become ninjas, and this is Master Ninja ter-
ritory. So don’t feel bad if it takes a while for you to grok it.

 In fact, to make it a bit easier to digest, we’re going to present the code in com-
plete form in the next listing so that we can see how all the parts fit together. Then
we’ll dissect it piece by piece in the subsections that follow.

(function() {
 var initializing = false,
 superPattern =
 /xyz/.test(function() { xyz; }) ? /\b_super\b/ : /.*/;

 Object.subClass = function(properties) {
 var _super = this.prototype;

 initializing = true;
 var proto = new this();
 initializing = false;

 for (var name in properties) {

 proto[name] = typeof properties[name] == "function" &&
 typeof _super[name] == "function" &&
 superPattern.test(properties[name]) ?
 (function(name, fn) {
 return function() {
 var tmp = this._super;

 this._super = _super[name];

 var ret = fn.apply(this, arguments);
 this._super = tmp;

 return ret;
 };
 })(name, properties[name]) :
 properties[name];
 }

 function Class() {
 // All construction is actually done in the init method
 if (!initializing && this.init)

Listing 6.21 A subclassing method

This gnarly regular expression determines if
functions can be serialized. Read on to see

what all that means. b

Adds a subClass()
method to Object. c

Instantiates the
superclass. d

Copies properties
into the prototype. e

Defines an
overriding
function.

 f

Creates a dummy class
constructor.
Licensed to Maxeta Technologies <account@maxetatech.com>

146 CHAPTER 6 Object-orientation with prototypes
 this.init.apply(this, arguments);
 }

 Class.prototype = proto;

 Class.constructor = Class;

 Class.subClass = arguments.callee;

 return Class;
 };
})();

The two most important parts of this implementation are the initialization and super-
method portions. Having a good understanding of what’s being achieved in these
areas will help with understanding the full implementation. But as it’d be confusing to
jump right into the middle of this rather complex code, we’ll start at the top and work
our way through it from top to bottom.

 Let’s start with something you might not ever have seen before.

6.3.1 Checking for function serializability

Unfortunately, the code that starts out our implementation is something that’s rather
esoteric, and it could be confusing to most. Later on in the code, we’re going to need
to know if the browser supports function serialization. But the test for that is one with
rather complex syntax, so we’re going to get it out of the way now, and store the result
so that we don’t have to complicate the later code, which will already be complicated
enough in its own right.

 Function serialization is simply the act of taking a function and getting its text source
back. We’ll need this approach later to check if a function has a specific reference
within it that we’re interested in.

 In most modern browsers, the function’s toString() method will do the trick. Gen-
erally, a function is serialized by using it in a context that expects a string, causing its
toString() method to be invoked. And so it is with our code to test if function serializa-
tion works.

 After we set a variable named initializing to false (we’ll see why in just a bit), we
test if function serialization works with this expression B:

/xyz/.test(function() { xyz; })

This expression creates a function that contains the text “xyz” and passes it to the
test() method of a regular expression that tests for the string “xyz”. If the function is
correctly serialized (the test() method expects a string, which triggers the function’s
toString() method), the result will be true.

 Using this text expression, we set up a regular expression to be used later in the
code as follows:

superPattern = /xyz/.test(function() { xyz; }) ? /\b_super\b/ : /.*/;

Populates the class
prototype.

Overrides the constructor
reference.

Makes the
class extendable.
Licensed to Maxeta Technologies <account@maxetatech.com>

147Writing class-like code
This establishes a variable named superPattern that we’ll use later to check if a function
contains the string “_super”. We can only do that if function serialization is supported, so
in the browsers that don’t allow us to serialize functions, we substitute a pattern that
matches anything.

 We’ll be using this result later on, but by doing the check now, we don’t have to
embed this expression, with its rather complicated syntax, in the later code.

NOTE We’ll be investigating regular expressions at length in the next chapter.

Now let’s move on to the actual implementation of the subclassing method.

6.3.2 Initialization of subclasses

At this point, we’re ready to declare the method that will subclass a superclass c,
which we accomplish with the following code:

Object.subClass = function(properties) {
 var _super = this.prototype;

This adds a subClass() method to Object that accepts a single parameter that we’ll
expect to be a hash of the properties to be added to the subclass.

 In order to simulate inheritance with a function prototype, we use the previously
discussed technique of creating an instance of the superclass and assigning it to the
prototype. Without using our preceding implementation, it could look something like
this code:

function Person(){}
function Ninja(){}
Ninja.prototype = new Person();
assert((new Ninja()) instanceof Person,
 "Ninjas are people too!");

What’s challenging about this snippet is that all we really want are the benefits of
instanceof, but not the whole cost of instantiating a Person object and running its
constructor. To counteract this, we have a variable in our code, initializing, that’s set
to true whenever we want to instantiate a class with the sole purpose of using it for
a prototype.

 Thus, when it comes time to construct an instance, we can make sure that we’re
not in an initialization mode and run or skip the init() method accordingly:

if (!initializing && this.init)
 this.init.apply(this, arguments);

What’s especially important about this is that the init() method could be running all
sorts of costly startup code (connecting to a server, creating DOM elements, who
knows), so we circumvent any unnecessary and expensive startup code when we’re
simply creating an instance to serve as a prototype.

 What we need to do next is copy any subclass-specific properties that were passed
to the method to the prototype instance. But that’s not quite as easy as it sounds.
Licensed to Maxeta Technologies <account@maxetatech.com>

148 CHAPTER 6 Object-orientation with prototypes
6.3.3 Preserving super-methods

In most languages supporting inheritance, when a method is overridden, we retain
the ability to access the overridden method. This is useful, because sometimes we want
to completely replace a method’s functionality, but sometimes we just want to aug-
ment it. In our particular implementation, we create a new temporary method named
_super, which is only accessible from within a subclassed method and which references
the original method in the superclass.

 For example, recall from listing 6.20, when we wanted to call a superclass’s con-
structor, we did that with the following code (parts omitted for brevity):

var Person = Object.subClass({
 init: function(isDancing){
 this.dancing = isDancing;
 }
});

var Ninja = Person.subclass({
 init: function(){
 this._super(false);
 }
});

Within the constructor for Ninja, we call the constructor for Person, passing an appro-
priate value. This prevents us from having to copy code—we can leverage the code
within the superclass that already does what we need it to do.

 Implementing this functionality (in the code of listing 6.21) is a multistep process. In
order to augment our subclass with the object hash that’s passed into the subClass()
method, we simply need to merge the superclass properties and the passed properties.

 To start, we create an instance of the superclass to use as a prototype d with the
following code:

initializing = true;
var proto = new this();
initializing = false;

Note how we “protect” the initialization code, as we discussed in the previous section,
with the value of the initializing variable.

 Now we’re ready to merge the passed properties into this proto object (a prototype
of a prototype, if you will) e. If we were unconcerned with superclass functions that
would be an almost trivial task:

for (var name in properties) proto[name] = properties[name];

But we are concerned with superclass functions, so the preceding code will work for all
properties except functions that want to call their superclass equivalent. When we’re
overriding a function with one that will be calling it via _super, we’ll need to wrap the
subclass function with one that defines a reference to the superclass function via a
property named _super.
Licensed to Maxeta Technologies <account@maxetatech.com>

149Writing class-like code
 But before we can do that, we need to detect the condition under which we need to
wrap the subclass function. We can do that with the following conditional expression:

typeof properties[name] == "function" &&
typeof _super[name] == "function" &&
superPattern.test(properties[name])

This expression contains clauses that check three things:

■ Is the subclass property a function?
■ Is the superclass property a function?
■ Does the subclass function contain a reference to _super()?

Only if all three clauses are true do we need to do anything other than copy the
property value. Note that we use the regular expression pattern that we set up in sec-
tion 6.3.1, along with function serialization, to test whether the function calls its
superclass equivalent.

 If the conditional expression indicates that we must wrap the function, we do so by
assigning the result of the following immediate function f to the subclass property:

(function(name, fn) {
 return function() {
 var tmp = this._super;

 this._super = _super[name];

 var ret = fn.apply(this, arguments);
 this._super = tmp;

 return ret;
 };
})(name, properties[name])

This immediate function creates and returns a new function that wraps and executes
the subclass function while making the superclass function available via the _super
property. To start, we need to be good citizens and save a reference to the old
this._super (regardless of whether it already exists) and restore it after we’re done.
This will help in the case where a variable with the same name already exists (we don’t
want to accidentally blow it away).

 Next we create the new _super method, which is just a reference to the method that
exists in the superclass prototype. Thankfully, we don’t have to make any additional
changes or do any rescoping here; the context of the function will be set automatically
when it’s a property of our object (this will refer to our instance as opposed to that of
the superclass).

 Finally we call our original method, which does its work (possibly making use of
_super as well), and then we restore _super to its original state and return from
the function.

 There are any number of ways in which similar results could be achieved (there are
implementations that have bound the _super method to the method itself, accessible
Licensed to Maxeta Technologies <account@maxetatech.com>

150 CHAPTER 6 Object-orientation with prototypes
from arguments.callee), but this particular technique provides a good mix of usability
and simplicity.

6.4 Summary
Adding object-orientation to JavaScript via function prototypes and prototypal inheri-
tance can provide an incredible amount of wealth to developers who prefer an object-
oriented slant to their code. By allowing for the greater degree of control and
structure that object-orientation can bring to the code, JavaScript applications can
improve in clarity and quality.

 In this chapter, we looked at how using the prototype property of functions allows
us to bring object orientation to JavaScript code:

■ We started by examining exactly what prototype is, and what role it plays when a
function is paired with the new operator to become a constructor. We observed
how functions behave when used as constructors, and how this differs from
direct invocation of the function.

■ Then we saw how to determine the type of an object, and how to discover which
constructor resulted in its coming into being.

■ We then dug into the object-oriented concept of inheritance and learned how
to use the prototype chain to effect inheritance in JavaScript code.

■ In order to avoid common pitfalls, we looked at some common “gotchas” that
could trap the unwary, with regards to extending Object and other native
objects. We also saw how to guard against instantiation issues caused by the
improper use of our constructors.

■ We wrapped up the chapter by proposing a syntax that could be used to enable
the subclassing of objects in JavaScript, and we then created a method that
implements that syntax. (Not for the faint of heart, that example!)

■ Due to the inherit extensibility that prototypes provide, they afford a versatile
platform for future development.

In the final example of this chapter, we caught a glimpse of the use of regular expres-
sions. In the next chapter, we’ll take an in-depth look at this frequently overlooked,
but very powerful, feature of the JavaScript language.
Licensed to Maxeta Technologies <account@maxetatech.com>

Wrangling
regular expressions
Regular expressions are a necessity of modern development. There, we said it.
 While many a web developer could go through life happily ignoring regular

expressions, there are some problems that need to be solved in JavaScript code that
can’t be addressed elegantly without regular expressions.

 Sure, there may be other ways to solve the same problems. But frequently, some-
thing that might take a half-screen of code can be distilled down to a single state-
ment with the proper use of regular expressions. Every JavaScript ninja will have
the regular expression as an essential part of his or her toolkit.

 Regular expressions trivialize the process of tearing apart strings and looking
for information. Everywhere you look in mainstream JavaScript libraries, you’ll see
the prevalent use of regular expressions for various spot tasks:

■ Manipulating strings of HTML nodes
■ Locating partial selectors within a CSS selector expression

This chapter covers
■ A refresher on regular expressions
■ Compiling regular expressions
■ Capturing with regular expressions
■ Frequently encountered idioms
151

Licensed to Maxeta Technologies <account@maxetatech.com>

152 CHAPTER 7 Wrangling regular expressions
■ Determining if an element has a specific class name
■ Extracting the opacity from Internet Explorer’s filter property
■ And more...

Let’s start by looking at an example.

TIP Getting fluent with regular expressions requires a lot of practice. You
might find a site such as JS Bin (jsbin.com) handy for playing around with
examples quickly. Another useful site expressly dedicated to regular expres-
sion testing is the Regular Expression Test Page for JavaScript (www.regexplanet
.com/advanced/javascript/index.html).

7.1 Why regular expressions rock
Let’s say that we wanted to validate that a string, perhaps entered into a form by a web-
site user, follows the format for a nine-digit U.S. postal code. We all know that the U.S.
Postal Service has little sense of humor, and they insist that a U.S. postal code (also
known as a ZIP code) follow a specific format,

99999-9999

where each 9 represents a decimal digit. The format is five decimal digits, followed by
a hyphen, followed by four decimal digits. If you use any other format, your package
or letter gets diverted into the black hole of the hand-sorting department, and good
luck predicting how long it will take to emerge again from the event horizon.

 Let’s create a function that, given a string, will verify that the U.S. Postal Service
will stay happy. We could resort to simply performing a comparison on each character,
but we’re ninjas and that’s too inelegant a solution, resulting in a lot of needless repe-
tition. Rather, consider the following solution.

function isThisAZipCode(candidate) {
 if (typeof candidate !== "string" ||
 candidate.length != 10) return false;
 for (var n = 0; n < candidate.length; n++) {
 var c = candidate[n];
 switch (n) {
 case 0: case 1: case 2: case 3: case 4:
 case 6: case 7: case 8: case 9:
 if (c < '0' || c > '9') return false;
 break;
 case 5:
 if (c != '-') return false;
 break;
 }
 }
 return true;
}

Listing 7.1 Testing for a specific pattern in a string

Short circuits obviously
bogus candidates

Performs tests based
upon character index

If all succeeded,
we’re good!
Licensed to Maxeta Technologies <account@maxetatech.com>

www.regexplanet.com/advanced/javascript/index.html
www.regexplanet.com/advanced/javascript/index.html

153A regular expression refresher
This code takes advantage of the fact that we only have two different checks to make
depending upon the position of the character within the string. We still need to perform
up to nine comparisons at runtime, but we only have to write each comparison once.

 Even so, would anyone consider this solution elegant? It’s more elegant than the
brute-force, non-iterative approach would be, but it still seems like an awful lot of
code for such a simple check.

 Now consider this approach:

function isThisAZipCode(candidate) {
 return /^\d{5}-\d{4}$/.test(candidate);
}

Except for some rather esoteric syntax in the body of the function, that’s a lot more
succinct and elegant, no?

 That’s the power of regular expressions, and it’s just the tip of the iceberg. Don’t
worry if that syntax looks like someone’s pet iguana walked across the keyboard; we’re
about to recap regular expressions before we dive into seeing how to use them in
ninja-like fashion on our pages.

7.2 A regular expression refresher
Much as we’d like to, we can’t offer you an exhaustive tutorial on regular expressions
in the space we have. After all, entire books have been dedicated to regular expres-
sions. But we’ll do our best to hit all the important points.

 For more detail than we can offer in this chapter, the books Mastering Regular
Expressions by Jeffrey E.F. Friedl, Introducing Regular Expressions by Michael Fitzgerald,
and Regular Expressions Cookbook by Jan Goyvaerts and Steven Levithan, all from O’Reilly,
are popular choices.

 Let’s dig in.

7.2.1 Regular expressions explained

The term regular expression stems from mid-century mathematics when a mathemati-
cian named Stephen Kleene described models of computational automata as “regular
sets.” But that won’t help us understand anything about regular expressions, so let’s
simplify things and say that a regular expression is simply a way to express a pattern for
matching strings of text. The expression itself consists of terms and operators that
allow us to define these patterns. We’ll see what those terms and operators consist of
very shortly.

 In JavaScript, as with most other object types, we have two ways to create a regular
expression: via a regular expression literal, and by constructing an instance of a
RegExp object.

 For example, if we wanted to create a rather mundane regular expression (or regex,
for short) that matches the string “test” exactly, we could do so with a regex literal:

var pattern = /test/;
Licensed to Maxeta Technologies <account@maxetatech.com>

154 CHAPTER 7 Wrangling regular expressions
That might look a bit strange with those forward slashes, but regex literals are delim-
ited using forward slashes in the same way that string literals are delimited with
quote characters.

 Alternatively, we could construct a RegExp instance, passing the regex as a string:

var pattern = new RegExp("test");

Both of these formats result in the same regex being created in the variable pattern.
 The literal syntax is preferred when the regex is known at development time, and

the constructor approach used when the regex is constructed at runtime by building
it up dynamically in a string.

 One of the reasons that the literal syntax is preferred over expressing regexes in a
string is that (as we shall soon see) the backslash character plays an important part in
regular expressions. But the backslash character is also the escape character for string
literals, so to express a backslash within a string literal, we need to use \\ (double
backslash). This can make regular expressions, which already possess a rather cryptic
syntax, even more odd-looking when expressed within strings.

 In addition to the expression itself, there are three flags that can be associated with
a regex:

■ i—Makes the regex case-insensitive, so /test/i matches not only “test”, but also
“Test”, “TEST”, “tEsT”, and so on.

■ g—Matches all instances of the pattern, as opposed to the default of “local,”
which matches only the first occurrence. More on this later.

■ m—Allows matches across multiple lines, as might be obtained from the value of
a textarea element.

These flags are appended to the end of the literal (for example, /test/ig) or passed
in a string as the second parameter to the RegExp constructor (new RegExp("test",
"ig")).

 Simply matching the exact string “test” (even in a case-insensitive manner) isn’t
very interesting—after all, we can do that particular check with a simple string com-
parison. So let’s take a look at the terms and operators that give regular expressions
their immense power to match more compelling patterns.

7.2.2 Terms and operators

Regular expressions, like most other expressions we’re familiar with, are made up of
terms and operators that qualify those terms. In the sections that follow, we’ll take a
look at these terms and operators and see how they can be used to express patterns.

EXACT MATCHING

Any character that’s not a special character or operator (which we’ll be introducing as
we go along) represents a character that must appear literally in the expression. For
example, in our /test/ regex, there are four terms that represent characters that must
appear literally in a string for it to match the expressed pattern.
Licensed to Maxeta Technologies <account@maxetatech.com>

155A regular expression refresher
 Placing such characters one after the other implicitly denotes an operation that
means “followed by.” So /test/ means “t” followed by “e” followed by “s” followed by “t”.

MATCHING FROM A CLASS OF CHARACTERS

Many times, we won’t want to match a specific literal character, but a character from a
finite set of characters. We can specify this with the set operator (also called the charac-
ter class operator) by placing the set of characters that we wish to match in square
brackets: [abc].

 The preceding example would signify that we want to match any of the characters
“a”, “b”, or “c”. Note that even though this expression spans five characters, it matches
only a single character in the candidate string.

 Other times, we want to match anything but a finite set of characters. We can specify
this by placing a caret character (^) right after the opening bracket of the set operator:

[^abc]

This changes the meaning to any character but “a”, “b”, or “c”.
 There’s one more invaluable variation to the set operation: the ability to specify a

range of values. For example, if we wanted to match any one of the lowercase charac-
ters between “a” and “m”, we could write [abcdefghijklm]. But we can express that
much more succinctly as follows:

[a-m]

The dash indicates that all characters from “a” though “m” inclusive (and lexicograph-
ically) are included in the set.

ESCAPING

Not all characters represent their literal equivalent. Certainly all of the alphabetic and
decimal digit characters represent themselves, but as we’ll shortly see, special charac-
ters such as $ and the period (.) character either represent matches to something
other than themselves, or operators that qualify the preceding term. In fact, we’ve
already seen how the [,], -, and ^ characters are used to represent something other
than their literal selves.

 How do we specify that we want to match a literal [or $ or ^ or other special char-
acter? Within a regex, the backslash character escapes whatever character follows it,
making it a literal match term. So \[specifies a literal match to the [character, rather
than the opening of a character class expression. A double backslash (\\) matches a
single backslash.

BEGINS AND ENDS

Frequently we may wish to ensure that a pattern matches at the beginning of a string,
or perhaps at the end of a string. The caret character, when used as the first character
of the regex, anchors the match at the beginning of the string, such that /^test/ only
matches if the substring “test” appears at the beginning of the string being matched.
(Note that this is an overloading of the ^ character, because it’s also used to negate a
character class set.)
Licensed to Maxeta Technologies <account@maxetatech.com>

156 CHAPTER 7 Wrangling regular expressions
 Similarly, the dollar sign ($) signifies that the pattern must appear at the end of the
string: /test$/.

 Using both the ^ and the $ indicates that the specified pattern must encompass the
entire candidate string:

/^test$/

REPEATED OCCURRENCES

If we wanted to match a series of four “a” characters, we might express that with /aaaa/,
but what if we wanted to match any number of the same character?

 Regular expressions give us the means to specify a number of different repeti-
tion options:

■ We can specify that a character is optional (in other words, can appear either
once or not at all) by following it with ?. For example, /t?est/ matches both
“test” and “est”.

■ If we want a character to appear one or many times, we use +, as in /t+est/,
which matches “test”, “ttest”, and “tttest”, but not “est”.

■ If we want the character to appear zero or many times, * is used, as in /t*est/,
which matches “test”, “ttest”, “tttest”, and “est”.

■ We can specify a fixed number of repetitions with the number of allowed repeti-
tions between braces. For example, /a{4}/ indicates a match on four consecu-
tive “a” characters.

■ We can also specify a range for the repetition count by specifying the range with
a comma separator. For example, /a{4,10}/ matches any string of four through
ten consecutive “a” characters.

■ The second value in a range can be omitted (but leaving the comma) to indi-
cate an open-ended range. The regex /a{4,}/ matches any string of four or
more consecutive “a” characters.

Any of these repetition operators can be greedy or nongreedy. By default, they’re greedy:
they will consume all the possible characters that comprise a match. Annotating the
operator with a ? character (an overload of the ? operator), as in a+?, makes the oper-
ation nongreedy: it will consume only enough characters to make a match.

 For example, if we were matching against the string “aaa”, the regular expression /
a+/ would match all three a characters, whereas the nongreedy expression /a+?/ would
match only one a character, because a single a character is all that’s needed to satisfy
the a+ term.

PREDEFINED CHARACTER CLASSES

There are some characters that we’d like to match that are impossible to specify
with literal characters (such as control characters like a carriage return), and there
are also character classes that we might often want to match, such as the set of deci-
mal digits, or the set of whitespace characters. The regular expression syntax gives
us a number of predefined terms that represent these characters or commonly used
Licensed to Maxeta Technologies <account@maxetatech.com>

157A regular expression refresher
classes so that we can use control-character matching in our regular expressions,
and so that we don’t need to resort to the character class operator for commonly
used sets of characters.

 Table 7.1 lists these terms and what character or set of characters they represent.

These predefined sets help us to keep our regular expressions from looking exces-
sively cryptic.

GROUPING

So far we’ve seen that operators (such as + and *) only affect the preceding term. If we
want to apply the operator to a group of terms, we can use parentheses for groups just
as in a mathematical expression. For example, /(ab)+/ matches one or more consecu-
tive occurrences of the substring “ab”.

Table 7.1 Predefined character class and character terms

Predefined term Matches

\t Horizontal tab

\b Backspace

\v Vertical tab

\f Form feed

\r Carriage return

\n Newline

\cA : \cZ Control characters

\x0000 : \xFFFF Unicode hexadecimal

\x00 : \xFF ASCII hexadecimal

. Any character, except for newline (\n)

\d Any decimal digit; equivalent to [0-9]

\D Any character but a decimal digit; equivalent to [^0-9]

\w Any alphanumeric character including underscore; equivalent to
[A-Za-z0-9_]

\W Any character but alphanumeric and underscore characters; equivalent
to [^A-Za-z0-9_]

\s Any whitespace character (space, tab, form feed, and so on)

\S Any character but a whitespace character

\b A word boundary

\B Not a word boundary (inside a word)
Licensed to Maxeta Technologies <account@maxetatech.com>

158 CHAPTER 7 Wrangling regular expressions
 When a part of a regex is grouped with parentheses, it serves double duty, also cre-
ating what’s known as a capture. There’s a lot to captures, and we’ll be discussing them
in more depth in section 7.4.

ALTERNATION (OR)
Alternatives can be expressed using the | (pipe) character. For example: /a|b/
matches either the “a” or “b” character, and /(ab)+|(cd)+/ matches one or more occur-
rences of either “ab” or “cd”.

BACKREFERENCES

The most complex of terms we can express in regular expressions are backreferences
to captures defined in the regex. We’ll be addressing captures at length in section 7.4,
but for now just think of them as the portions of a candidate string that are success-
fully matched against terms in the regular expression.

 The notation for such a term is the backslash followed by the number of the cap-
ture to be referenced, beginning with 1, such as \1, \2, and so on.

 An example could be /^([dtn])a\1/, which matches a string that starts with any of
the “d”, “t”, or “n” characters, followed by an “a”, followed by whatever character
matched the first capture. This latter point is important! This isn’t the same as /[dtn]
a[dtn]/. The character following the “a” can’t be any of “d”, or “t”, or “n”, but must be
whichever one of those triggered the match for the first character. As such, which
character the \1 will match can’t be known until evaluation time.

 A good example of where this might be useful is in matching XML-type markup
elements. Consider the following regex:

/<(\w+)>(.+)<\/\1>/

This allows us to match simple elements such as “whatever”. Without
the ability to specify a backreference, this would not be possible, because we’d have no
way to know what closing tag would match the opening tag ahead of time.

TIP That was kind of a whirlwind crash course on regular expressions. If
they’re still making you pull your hair out and you find yourself bogged down
in the material that follows, we strongly recommend using one of the
resources we mentioned earlier in this chapter.

Now that we have a handle on what regular expressions are, let’s look at how we can
use them wisely in our code.

7.3 Compiling regular expressions
Regular expressions go through multiple phases of processing, and understand-
ing what happens during each of these phases can help us optimize JavaScript
code that utilizes regular expressions. The two prominent phases are compilation
and execution.

 Compilation occurs when the regular expression is first created. Execution is when
we use the compiled regular expression to match patterns in a string.
Licensed to Maxeta Technologies <account@maxetatech.com>

159Compiling regular expressions
 During compilation, the expression is parsed by the JavaScript engine and con-
verted into its internal representation (whatever that may be). This phase of parsing
and conversion must occur every time a regular expression is created (discounting
any internal optimizations performed by the browser).

 Frequently browsers are smart enough to determine when identical regular expres-
sions are being used, and to cache the compilation results for that particular
expression. But we can’t count on this being the case in all browsers. For complex
expressions, in particular, we can begin to get some noticeable speed improvements
by predefining (and thus precompiling) our regular expressions for later use.

 As we learned in our regular expression overview in the previous section, there are
two ways of creating a compiled regular expression in JavaScript: via a literal and via a
constructor. Let’s look at an example in the next listing.

<script type="text/javascript">

 var re1 = /test/i;

 var re2 = new RegExp("test", "i");

 assert(re1.toString() == "/test/i",
 "Verify the contents of the expression.");
 assert(re1.test("TesT"), "Yes, it's case-insensitive.");
 assert(re2.test("TesT"), "This one is too.");
 assert(re1.toString() == re2.toString(),
 "The regular expressions are equal.");
 assert(re1 != re2, "But they are different objects.");
</script>

In this example, both regular expressions are in their compiled state after creation. If
we were to replace every reference to re1 with the literal /test/i, it’s possible that the
same regex would be compiled time and time again, so compiling a regex once and
storing it in a variable for later reference can be an important optimization.

 Note that each regex has a unique object representation: every time a regular
expression is created (and thus compiled), a new regular expression object is created.
This is unlike other primitive types (like string, number, and so on) because the result
will always be unique.

 Of particular importance is the use of the constructor (new RegExp(...)) to create a
regular expression. This technique allows us to build and compile an expression from
a string that we can dynamically create at runtime. This can be immensely useful for
constructing complex expressions that will be heavily reused.

 For example, let’s say that we wanted to determine which elements within a docu-
ment have a particular class name, whose value we won’t know until runtime. As ele-
ments are capable of having multiple class names associated with them (inconveniently
stored in a space-delimited string), this serves as an interesting example of runtime,
regular-expression compilation (see the following listing).

Listing 7.2 Two ways to create a compiled regular expression

Creates a regex
via a literal

Creates a regex
via the constructor
Licensed to Maxeta Technologies <account@maxetatech.com>

160 CHAPTER 7 Wrangling regular expressions
<div class="samurai ninja"></div>
<div class="ninja samurai"></div>
<div></div>

<script>
 function findClassInElements(className, type) {

 var elems =
 document.getElementsByTagName(type || "*");

 var regex =
 new RegExp("(^|\\s)" + className + "(\\s|$)");

 var results = [];

 for (var i = 0, length = elems.length; i < length; i++)
 if (regex.test(elems[i].className)) {
 results.push(elems[i]);
 }
 return results;
 }

 assert(findClassInElements("ninja", "div").length == 2,
 "The right amount of div ninjas was found.");
 assert(findClassInElements("ninja", "span").length == 1,
 "The right amount of span ninjas was found.");
 assert(findClassInElements("ninja").length == 3,
 "The right amount of ninjas was found.");
</script>

There are a number of interesting things that we can learn from listing 7.3. To start, we
set up a number of test-subject <div> and elements with various combinations of
class names B. Then we define our class-name checking function, which accepts as
parameters the class name for which we’ll check and the element type to check within.

 Then we collect all the elements of the specified type c and set up our regular
expression d. Note the use of the new RegExp() constructor to compile a regular expres-
sion based upon the class name passed to the function. This is an instance where
we’re unable to use a regex literal, as the class name for which we’ll search isn’t known
in advance.

 We construct (and hence, compile) this expression once in order to avoid fre-
quent and unnecessary recompilation. Because the contents of the expression are
dynamic (based upon the incoming className argument) we can realize major perfor-
mance savings by handling the expression in this manner.

 The regex itself matches either the beginning of the string or a whitespace charac-
ter, followed by our target class name, followed by either a whitespace character or the
end of the string. Something to notice is the use of a double-escape (\\) within
the new regex: \\s. When creating literal regular expressions with terms including the
backslash, we only have to provide the backslash once. But because we’re writing these
backslashes within a string, we must double-escape them. This is a nuisance, to be

Listing 7.3 Compiling a runtime regular expression for later use

Creates test subjects of
various elements with
various class names

 b

Collects elements
by type c

Compiles a regex using the
passed class name d

Stores the results e

Tests for regex
matches f
Licensed to Maxeta Technologies <account@maxetatech.com>

161Capturing matching segments
sure, but one that we must be aware of when constructing regular expressions in
strings rather than literals.

 Once the regex is compiled, using it to collect e the matching elements is a snap
via the test() method f.

 Preconstructing and precompiling regular expressions so that they can be reused
(executed) time and time again is a recommended technique that affords us perfor-
mance gains that can’t be ignored. Virtually all complex regular expression situations
can benefit from the use of this technique.

 Back in the introductory section of this chapter, we mentioned that the use of
parentheses in regular expressions served not only to group terms for operator appli-
cation, but also created what are known as captures. Let’s find out more about that.

7.4 Capturing matching segments
The height of usefulness with respect to regular expressions is realized when we cap-
ture the results that are found so that we can do something with them. Simply deter-
mining if a string matches a pattern is an obvious first step and often all that we need,
but determining what was matched is also useful in many situations.

7.4.1 Performing simple captures

Take a situation in which we want to extract a value that’s embedded in a complex
string. A good example of such a string might be the manner in which opacity values
are specified for legacy Internet Explorer.

 Rather than the conventional opacity rule with a numerical value employed by the
other browsers, IE 8 and earlier versions use a rule like this:

filter:alpha(opacity=50);

In the following listing, we extract the opacity value out of this filter string.

<div id="opacity"
 style="opacity:0.5;filter:alpha(opacity=50);">
</div>

<script type="text/javascript">
 function getOpacity(elem) {
 var filter = elem.style.filter;
 return filter ?
 filter.indexOf("opacity=") >= 0 ?
 (parseFloat(filter.match(/opacity=([^)]+/)[1]) / 100) + "" :
 "" :
 elem.style.opacity;
 }

 window.onload = function() {
 assert(
 getOpacity(document.getElementById("opacity")) == "0.5",

Listing 7.4 A simple function for capturing an embedded value

Defines the
test subject b

Decides what
to return

 c
Licensed to Maxeta Technologies <account@maxetatech.com>

162 CHAPTER 7 Wrangling regular expressions
 "The opacity of the element has been obtained.");
 };
</script>

We define an element that specifies both styles for opacity (one for standards-compliant
browsers, and one for legacy IE) that we’ll use as a test subject B. Then we create a func-
tion that will return the opacity value as the standards-defined value from 0.0 to 1.0,
regardless of how it was defined.

 The opacity parsing code may seem a little bit confusing at first c, but it’s not too
bad once we break it down. To start with, we need to determine if a filter property
even exists for us to parse. If not, we try to access the opacity style property instead. If
the filter property is resident, we need to verify that it will contain the opacity string
that we’re looking for. We do that with the indexOf() call.

 At this point, we can get down to the actual opacity value extraction. The match()
method of a regular expression returns an array of captured values if a match is
found, or null if no match is found. In this case, we can be confident that there will be
a match, as we already determined that with the indexOf() call.

 The array returned by match always includes the entire match in the first index, and
then each subsequent capture following.

 So the zeroth entry would be the entire matched string of filter:alpha(opacity=50),
while the entry at the next position would be 50.

 Remember that the captures are defined by parentheses in the regular expression.
Thus, when we match the opacity value, the value is contained in the [1] position of
the array, because the only capture we specified in our regex was created by the paren-
theses that we embedded after the opacity= portion of the regex.

 This example used a local regular expression and the match() method. Things
change a bit when we use global expressions. Let’s see how.

7.4.2 Matching using global expressions
As we saw in the previous section, using a local regular expression (one without the
global flag) with the String object’s match() methods returns an array containing
the entire matched string, along with any matched captures in the operation.

 But when we supply a global regular expression (one with the g flag included),
match() returns something rather different. It’s still an array of results, but in the case
of a global regular expression, which matches all possibilities in the candidate string
rather than just the first match, the array returned contains the global matches; cap-
tures within each match aren’t returned in this case.

 We can see this in action in the following code and tests.

<script type="text/javascript">

 var html = "<div class='test'>Hello <i>world!</i></div>";

 var results = html.match(/<(\/?)(\w+)([^>]*?)>/);

Listing 7.5 Differences between a global and local search with match()

Matches
using a local
regex

 b
Licensed to Maxeta Technologies <account@maxetatech.com>

163Capturing matching segments
 assert(results[0] == "<div class='test'>", "The entire match.");
 assert(results[1] == "", "The (missing) slash.");
 assert(results[2] == "div", "The tag name.");
 assert(results[3] == " class='test'", "The attributes.");

 var all = html.match(/<(\/?)(\w+)([^>]*?)>/g);

 assert(all[0] == "<div class='test'>", "Opening div tag.");
 assert(all[1] == "", "Opening b tag.");
 assert(all[2] == "", "Closing b tag.");
 assert(all[3] == "<i>", "Opening i tag.");
 assert(all[4] == "</i>", "Closing i tag.");
 assert(all[5] == "</div>", "Closing div tag.");

</script>

We can see that when we do a local match B, a single instance is matched and the
captures within that match are also returned, but when we use a global match c,
what’s returned is the list of matches.

 If captures are important to us, we can regain this functionality while still perform-
ing a global search by using the regular expression’s exec() method. This method can
be repeatedly called against a regular expression, causing it to return the next
matched set of information every time it’s called. A typical pattern for how it can be
used is shown in the following listing.

<script type="text/javascript">

 var html = "<div class='test'>Hello <i>world!</i></div>";
 var tag = /<(\/?)(\w+)([^>]*?)>/g, match;
 var num = 0;

 while ((match = tag.exec(html)) !== null) {
 assert(match.length == 4,
 "Every match finds each tag and 3 captures.");
 num++;
 }

 assert(num == 6, "3 opening and 3 closing tags found.");

</script>

In this example, we repeatedly call the exec() method B, which retains state from its
previous invocation so that each subsequent call progresses to the next global match.
Each call returns the next match and its captures.

 By using either match() or exec(), we can always find the exact matches (and cap-
tures) that we’re looking for. But we’ll need to dig further if we want to refer back to
the captures themselves within the regex.

7.4.3 Referencing captures

There are two ways in which we can refer back to portions of a match that we’ve captured:
one within the match itself, and one within a replacement string (where applicable).

Listing 7.6 Using the exec() method to do both capturing and a global search

Matches using
a global regex c

Repeatedly
calls exec() b
Licensed to Maxeta Technologies <account@maxetatech.com>

164 CHAPTER 7 Wrangling regular expressions
 For example, let’s revisit the match in listing 7.6 (in which we match an opening or
closing HTML tag) and modify it in the following listing to also match the inner con-
tents of the tag itself.

<script type="text/javascript">

 var html = "<b class='hello'>Hello <i>world!</i>";

 var pattern = /<(\w+)([^>]*)>(.*?)<\/\1>/g;

 var match = pattern.exec(html);

 assert(match[0] == "<b class='hello'>Hello",
 "The entire tag, start to finish.");
 assert(match[1] == "b", "The tag name.");
 assert(match[2] == " class='hello'", "The tag attributes.");
 assert(match[3] == "Hello", "The contents of the tag.");

 match = pattern.exec(html);

 assert(match[0] == "<i>world!</i>",
 "The entire tag, start to finish.");
 assert(match[1] == "i", "The tag name.");
 assert(match[2] == "", "The tag attributes.");
 assert(match[3] == "world!", "The contents of the tag.");

</script>

In listing 7.7, we use \1 to refer back to the first capture within the expression, which
in this case is the name of the tag. Using this information, we can match the appropri-
ate closing tag, referring back to whatever the capture matched. (This all assumes, of
course, that there aren’t any embedded tags of the same name within the current tag,
so this is hardly an exhaustive example of tag matching.)

 Additionally, there’s a way to get capture references within the replace string of a
call to the replace() method. Instead of using the backreference codes, as in the
example of listing 7.7, we use the syntax of $1, $2, $3, up through each capture num-
ber. Here’s an example of such usage:

assert("fontFamily".replace(/([A-Z])/g, "-$1").toLowerCase() ==
 "font-family", "Convert the camelCase into dashed notation.");

In this code, the value of the first capture (in this case, the capital letter F) is refer-
enced in the replace string (via $1). This allows us to specify a replace string without
even knowing what its value will be until matching time. That’s a pretty powerful
ninja-esque weapon to wield.

 The ability to reference regular-expression captures helps to make a lot of code
that would otherwise be rather difficult, quite easy. The expressive nature that it pro-
vides ends up allowing for some terse statements that could otherwise be rather
obtuse, convoluted, and lengthy.

 As both captures and expression grouping are specified using parentheses, there’s
no way for the regular-expression processor to know which sets of parentheses we

Listing 7.7 Using backreferences to match the contents of an HTML tag

Uses capture
backreference

Runs the pattern
on the test string

Tests various
captures that

are captured by
the defined pattern
Licensed to Maxeta Technologies <account@maxetatech.com>

165Capturing matching segments
added to the regex for grouping and which were intended to indicate captures. It
treats all sets of parentheses as both groups and captures, which can result in the cap-
ture of more information than we really intended, because we needed to specify some
grouping in the regex. What can we do in such cases?

7.4.4 Non-capturing groups
As we noted, parentheses serve a double duty: they not only group terms for opera-
tions, they also specify captures. This is usually not an issue, but in regular expressions
in which lots of grouping is going on, it could cause lots of needless capturing to go
on, which may make sorting through the resulting captures tedious.

 Consider the following regex:

var pattern = /((ninja-)+)sword/;

Here, our intent is to create a regex that allows the prefix “ninja-” to appear one or
more times before the word “sword”, and we want to capture the entire prefix. This
regex requires two sets of parentheses:

■ The parentheses that define the capture (everything before the string sword)
■ The parentheses that group the text ninja- for the + operator

This all works fine, but it results in more than the single intended capture due to the
inner set of grouping parentheses.

 To allow us to indicate that a set of parentheses should not result in a capture, the
regular expression syntax lets us put the notation ?: immediately after the opening
parenthesis. This is known as a passive subexpression.

 Changing our regular expression to

var pattern = /((?:ninja-)+)sword/;

causes only the outer set of parentheses to create a capture. The inner parentheses
have been converted to a passive subexpression.

 To test this, take a look at the following code.

<script type="text/javascript">

 var pattern = /((?:ninja-)+)sword/;

 var ninjas = "ninja-ninja-sword".match(pattern);

 assert(ninjas.length == 2,"Only one capture was returned.");
 assert(ninjas[1] == "ninja-ninja-",
 "Matched both words, without any extra capture.");

</script>

Running these tests, we can see that the passive subexpression B prevents unneces-
sary captures.

 Wherever possible in our regular expressions, we should strive to use non-capturing
(passive) groups in place of capturing when the capture is unnecessary, so that the

Listing 7.8 Grouping without capturing

Uses a passive
subexpression b
Licensed to Maxeta Technologies <account@maxetatech.com>

166 CHAPTER 7 Wrangling regular expressions
expression engine will have much less work to do in remembering and returning the
captures. If we don’t need captured results, there’s no need to ask for them! The price
that we pay is that it can make what are likely already-complex regular expressions a
tad more cryptic.

 Now let’s turn our attention to another way that regular expressions give us ninja
powers: using functions with the String’s replace() method.

7.5 Replacing using functions
The replace() method of the String object is a powerful and versatile method, which
we saw used briefly in our discussion of captures. When a regular expression is pro-
vided as the first parameter to replace(), it will cause a replacement on a match (or
matches if the regex is global) to the pattern rather than on a fixed string.

 For example, let’s say that we wanted to replace all uppercase characters in a string
with “X”. We could write the following:

"ABCDEfg".replace(/[A-Z]/g,"X")

This results in a value of “XXXXXfg”. Nice.
 But perhaps the most powerful feature presented by replace() is the ability to pro-

vide a function as the replacement value rather than a fixed string.
 When the replacement value (the second argument) is a function, it’s invoked for

each match found (remember that a global search will match all instances of the pat-
tern in the source string) with a variable list of parameters:

■ The full text of the match
■ The captures of the match, one parameter for each
■ The index of the match within the original string
■ The source string

The value returned from the function serves as the replacement value.
 This gives us a tremendous amount of leeway to determine what the replacement

string should be at runtime, with lots of information regarding the nature of the
match at our fingertips.

 For example, in the following listing we use the function to provide a dynamic
replacement value to convert a string with words separated by dashes to its camel-
cased equivalent.

<script type="text/javascript">

 function upper(all,letter) { return letter.toUpperCase(); }

 assert("border-bottom-width".replace(/-(\w)/g,upper)
 == "borderBottomWidth",
 "Camel cased a hyphenated string.");

</script>

Listing 7.9 Converting a dashed string to camel case

Converts to
uppercase

Matches dashed
characters
Licensed to Maxeta Technologies <account@maxetatech.com>

167Replacing using functions
Here, we provided a regex that matches any character preceded by a dash character. A
capture in the global regex identifies the character that was matched (without the
dash). Each time the function is called (twice in this example), it’s passed the full match
string as the first argument, and the capture (only one for this regex) as the second
argument. We aren’t interested in the rest of the arguments, so we didn’t specify them.

 The first time the function is called it’s passed “-b” and “b”, and the second time it’s
called it’s passed “-w” and “w”. In each case, the captured letter is uppercased and
returned as the replacement string. We end up with “-b” replaced by “B” and with “-w”
replaced by “W”.

 Because a global regex will cause such a replace function to be executed for every
match in a source string, this technique can even be extended beyond doing rote
replacements and can be used as a means of string traversal, instead of doing the
exec()-in-a-while-loop technique that we saw earlier in this chapter.

 For example, let’s say that we were looking to take a query string and convert it to
an alternative format that suits our purposes. We’d turn a query string such as

foo=1&foo=2&blah=a&blah=b&foo=3

into one that looks like this:

foo=1,2,3&blah=a,b"

A solution using regular expressions and replace() could result in some especially
terse code, as shown in the next listing.

<script type="text/javascript">

 function compress(source) {
 var keys = {};

 source.replace(
 /([^=&]+)=([^&]*)/g,
 function(full, key, value) {
 keys[key] =
 (keys[key] ? keys[key] + "," : "") + value;
 return "";
 }
);

 var result = [];
 for (var key in keys) {
 result.push(key + "=" + keys[key]);
 }

 return result.join("&");
 }

 assert(compress("foo=1&foo=2&blah=a&blah=b&foo=3") ==
 "foo=1,2,3&blah=a,b",
 "Compression is OK!");

</script>

Listing 7.10 A technique for compressing a query string

Stores located
keys b

Extracts
key/value info c

Collects
key info

 d

Joins results
with & e
Licensed to Maxeta Technologies <account@maxetatech.com>

168 CHAPTER 7 Wrangling regular expressions
The most interesting aspect of listing 7.10 is how it uses the string replace() method as
a means of traversing a string for values, rather than as an actual search-and-replace
mechanism. The trick is twofold: passing in a function as the replacement value argu-
ment, and instead of returning a value, simply utilizing it as a means of searching.

 The example code first declares a hash in which we store the keys and values that
we find in the source query string B. Then we call the replace() method c on the
source string, passing a regex that will match the key-value pairs, and capture the key and
the value. We also pass a function that will be passed the full match, the key capture,
and the value capture. These captured values get stored in the hash for later reference.

 Note how we simply return the empty string because we really don’t care what sub-
stitutions happen to the source string—we’re just using the side effects rather than
the actual result.

 Once replace() returns, we declare an array in which we’ll aggregate the results
and iterate through the keys that we found, adding each to the array d. Finally, we
join each of the results we stored in the array using & as the delimiter, and we return
the result e.

 Using this technique, we can co-opt the String object’s replace() method as our
very own string-searching mechanism. The result isn’t only fast but also simple and
effective. The level of power that this technique provides, especially in light of the
small amount of code necessary, should not be underestimated.

 In fact, all of these regular expression techniques can have a huge impact on how
we write script on our pages. Let’s see how we can apply what we’ve learned to solve
some common problems we might encounter.

7.6 Solving common problems with regular expressions
In JavaScript, a few idioms tend to occur again and again, but their solutions aren’t
always obvious. Our knowledge of regular expressions can definitely come to our res-
cue, and in this section we’ll look at a few common problems that we can solve with a
regex or two.

7.6.1 Trimming a string

Removing extra whitespace from the beginning and end of a string is a common
need, but one that was (until recently) omitted from the String object. Almost every
JavaScript library provides and uses an implementation of string trimming for older
browsers that don’t have the String.trim() method.

 The most commonly used approach looks something like the following code.

<script type="text/javascript">

 function trim(str) {
 return (str || "").replace(/^\s+|\s+$/g, "");
 }

Listing 7.11 A common solution to stripping whitespace from a string

Trims a string
without looping
Licensed to Maxeta Technologies <account@maxetatech.com>

169Solving common problems with regular expressions
 assert(trim(" #id div.class ") == "#id div.class",
 "Extra whitespace trimmed from a selector string.");

</script>

“Look, Ma! No looping!”
 Rather than iterating over characters to determine which ones need to be

trimmed, a single call to the replace() method with a regex that matches whitespace at
the beginning or end of a string does the job.

 Steven Levithan, one of the authors of the Regular Expressions Cookbook (O’Reilly,
2009), has done a lot of research into this subject, producing a number of alternative
solutions, which he details in his Flagrant Badassery blog: http://blog.stevenlevithan
.com/archives/faster-trim-javascript. It’s important to note, however, that in his test
cases he works against an incredibly large document, which is certainly a fringe case
for most applications.

 Of those solutions, two are of particular interest. The first is accomplished using
regular expressions, but with no \s+ and no | operator, as shown in the next listing.

<script type="text/javascript">

 function trim(str) {
 return str.replace(/^\s\s*/, '')
 .replace(/\s\s*$/, '');
 }

 assert(trim(" #id div.class ") == "#id div.class",
 "Extra whitespace trimmed from a selector string.");

</script>

This implementation performs two replacements: one for the leading whitespace, and
one for trailing whitespace.

 Dave’s second technique completely discards any attempt at stripping whitespace
from the end of the string using a regular expression and does it manually, as the fol-
lowing listing shows.

<script type="text/javascript">

 function trim(str) {
 var str = str.replace(/^\s\s*/, ''),
 ws = /\s/,
 i = str.length;
 while (ws.test(str.charAt(--i)));
 return str.slice(0, i + 1);
 }

 assert(trim(" #id div.class ") == "#id div.class",
 "Extra whitespace trimmed from a selector string.");

</script>

Listing 7.12 An alternative double-replacement trim implementation

Listing 7.13 A trim method that slices at the end of the string

Trims using two
replacements

Trims using
regex and slicing
Licensed to Maxeta Technologies <account@maxetatech.com>

http://blog.stevenlevithan .com/archives/faster-trim-javascript
http://blog.stevenlevithan .com/archives/faster-trim-javascript

170 CHAPTER 7 Wrangling regular expressions
This implementation uses a regex to trim at the leading edge and a slice operation at
the trailing edge.

 If you compare the performance of these implementations for short strings and
document-length strings, the difference becomes quite noticeable. Table 7.2 shows
the time in milliseconds to perform 1000 iterations of the trim() method.

This comparison makes it easy to see which implementation is the most scalable.
While the implementation of listing 7.13 fared poorly against the other implementa-
tions for short strings, it left the others in the dust for much longer (document-
length) strings.

 Ultimately, which will fare better depends on the situation in which you’re going to
perform the trimming. Most libraries use the first solution, and it’s likely that we’ll be
using it on smaller strings, so that seems to be the safest bet for legacy browsers.

 Let’s move on to another common need.

7.6.2 Matching newlines
When performing a search, it’s sometimes desirable for the . (period) term, which
matches any character except for newline, to also include newline characters. Regular
expression implementations in other languages frequently include a flag for making
this possible, but JavaScript’s implementation doesn’t.

 Let’s look at a couple of ways of getting around this omission in JavaScript, as
shown in the next listing.

<script type="text/javascript">

 var html = "Hello\n<i>world!</i>";

 assert(/.*/.exec(html)[0] === "Hello",
 "A normal capture doesn't handle endlines.");

 assert(/[\S\s]*/.exec(html)[0] ===
 "Hello\n<i>world!</i>",
 "Matching everything with a character set.");

 assert(/(?:.|\s)*/.exec(html)[0] ===
 "Hello\n<i>world!</i>",
 "Using a non-capturing group to match everything.");

</script>

Table 7.2 Performance comparison of three trim() implementations

Trim implementation Short string Document

Listing 7.11 8.7 ms 2,075.8 ms

Listing 7.12 8.5 ms 3,706.7 ms

Listing 7.13 13.8 ms 169.4 ms

Listing 7.14 Matching all characters, including newlines

Defines a
test subject

 b Shows that
newlines aren’t
matched

 c

Matches all using
whitespace matching d

Matches all using
alteration e
Licensed to Maxeta Technologies <account@maxetatech.com>

171Solving common problems with regular expressions
In this example, we define a test subject string B containing a newline. Then we try a
number of ways of matching all of the characters in the string.

 In the first test c, we verify that newlines aren’t matched by the . operator.
 Ninjas won’t be denied, so in the next test d we get our way with an alternative

regex, /[\S\s]*/, in which we define a character class that matches anything that’s not
a whitespace character and anything that is a whitespace character. This union is the
set of all characters.

 Another approach is taken in the next test e, where we use an alternation regex,
/(?:.|\s)*/, in which we match everything matched by ., which is everything but new-
line, and everything considered whitespace, which includes newline. The resulting
union is the set of all characters including newline. Note the use of a passive subex-
pression to prevent any unintended captures.

 Due to its simplicity (and implicit speed benefits), the solution provided by /[\S\s]*/
is generally considered optimal.

 Next, let’s take a step to widen our view to a worldwide scope.

7.6.3 Unicode

Frequently in the use of regular expressions, we want to match alphanumeric charac-
ters, such as an ID selector in a CSS selector engine implementation. But assuming
that the alphabetic characters will only be from the set of English characters is rather
shortsighted.

 Expanding the set to include Unicode characters is sometimes desirable, explicitly
supporting multiple languages not covered by the traditional alphanumeric character
set (see the next listing).

<script type="text/javascript">

 var text ="\u5FCD\u8005\u30D1\u30EF\u30FC";

 var matchAll =
 /[\w\u0080-\uFFFF_-]+/;

 assert((text).match(matchAll),
 "Our regexp matches unicode!");

</script>

Listing 7.15 includes the entire range of Unicode characters in the match by creat-
ing a character class that includes the \w term, to match all the “normal” word char-
acters, plus a range that spans the entire set of Unicode characters above character
code 128 (hex 0x80). Starting at 128 gives us some high ASCII characters along with
all Unicode characters.

 The astute among you might note that by adding the entire range of Unicode
characters above \u0080, we match not only alphabetic characters, but also all Uni-
code punctuation and other special characters (arrows, for example). But that’s OK,

Listing 7.15 Matching Unicode characters

Matches all
including Unicode
Licensed to Maxeta Technologies <account@maxetatech.com>

172 CHAPTER 7 Wrangling regular expressions
because the point of the example is to show how to match Unicode characters in gen-
eral. If you have a specific range of characters that you want to match, you can use the
lesson of this example to add whatever range you wish to the character class.

 Before we move on from our examination of regular expressions, let’s tackle one
more common issue.

7.6.4 Escaped characters

It’s common for page authors to use names that conform to program identifiers when
assigning id values to page elements, but that’s just a convention; id values can con-
tain characters other than “word” characters, including punctuation. For example, a
web developer might use the id value form:update for an element.

 A library developer, when writing an implementation for, say, a CSS selector
engine, would like to support this via escaped characters. This allows the user to spec-
ify complex names that don’t conform to typical naming conventions. So let’s develop
a regex that will allow us to match escaped characters. Consider the following code.

<script type="text/javascript">

 var pattern = /^((\w+)|(\\.))+$/;

 var tests = [
 "formUpdate",
 "form\\.update\\.whatever",
 "form\\:update",
 "\\f\\o\\r\\m\\u\\p\\d\\a\\t\\e",
 "form:update"
];

 for (var n = 0; n < tests.length; n++) {
 assert(pattern.test(tests[n]),
 tests[n] + " is a valid identifier");
 }

</script>

This particular expression works by allowing for a match of either a word character
sequence or a sequence of a backslash followed by any character.

7.7 Summary
Let’s recap what we’ve learned about regular expressions:

■ Regular expressions are a powerful tool that permeates modern JavaScript
development, with virtually every aspect of any sort of matching depending
upon their use. With a good understanding of the advanced regex con-
cepts that have been covered in this chapter, any developer should feel
comfortable in tackling a challenging piece of code that could benefit from
regular expressions.

Listing 7.16 Matching escaped characters in a CSS selector

This regular expression allows any sequence composed of a
sequence of word characters, a backslash followed by any

character (even a backslash), or both.

Sets up various test subjects. All should
pass but the last, which fails to escape

its non-word character (:).

Runs through all
the test subjects.
Licensed to Maxeta Technologies <account@maxetatech.com>

173Summary
■ We saw what the various terms and operators that go into a regex mean, and
how to combine them to form pattern-matching regular expressions.

■ We learned how to precompile regular expressions, and how doing so can give
us an enormous performance gain over letting a regex be recompiled every
time it’s needed.

■ We learned how to use regular expression to test a string for a match against the
pattern that the expression represents, and even more importantly, we learned
how to capture the segments of the source string that were matched.

■ We learned how to use useful methods like the exec() method of regular
expressions, as well as regex-oriented methods of String such as match() and
replace(). And we did so while learning the difference between local and global
regular expressions.

■ We saw how the segments that we captured could be used as backreferences
and replacement strings, and how to avoid unnecessary captures with passive
subexpressions.

■ We examined the utility of providing a function to dynamically determine a
replacement string. Then we rounded out the chapter with solutions to some
common idioms, such as string trimming and matching such characters as new-
lines and Unicode.

All told, that’s quite an arsenal of powerful tools to stuff into our ninja backpacks.
 Back at the beginning of chapter 3, we talked about the event loop and stated that

JavaScript executed all event callbacks in a single thread, each in its own turn. In the
next chapter, we’re going to examine JavaScript threading in detail and discuss its
effects upon timers and intervals.
Licensed to Maxeta Technologies <account@maxetatech.com>

Licensed to Maxeta Technologies <account@maxetatech.com>

Taming threads and timers
Timers are an often misused and poorly understood feature available to us in
JavaScript, but they can provide great benefit to the developer in complex applica-
tions when used properly.

 Note that we referred to timers as a feature that’s available in JavaScript, but
we didn’t call them a feature of JavaScript itself—they’re not. Rather, timers
are provided as part of the objects and methods that the web browser makes
available. This means that if we choose to use JavaScript in a non-browser envi-
ronment, it’s very likely that timers may not exist, and we’d have to implement
our own version of them using implementation-specific features (such as threads
in Rhino).

 Timers provide the ability to asynchronously delay the execution of a piece of
code by a number of milliseconds. Because JavaScript is, by nature, single-threaded

This chapter covers
■ How JavaScript handles threading
■ An examination of timer execution
■ Processing large tasks using timers
■ Managing animations with timers
■ Better testing with timers
175

Licensed to Maxeta Technologies <account@maxetatech.com>

176 CHAPTER 8 Taming threads and timers
(only one piece of JavaScript code can execute at a time), timers provide a way to
dance around this restriction, resulting in a rather oblique way of executing code.

NOTE HTML5 web workers will change a lot of this, but modern browsers
aren’t quite there yet, so it’s still important to understand how browsers are
currently working.

This chapter will take a look at how this all works.

8.1 How timers and threading work
Due to their sheer usefulness, it’s important to understand how timers work at a fun-
damental level. They may seem to behave non-intuitively at times because of the single
thread within which they execute; many programmers will most probably be accus-
tomed to how timers work in a multi-threaded environment.

 We’ll examine the ramifications of JavaScript’s single-threaded restrictions in a
moment, but let’s start by examining the functions we can use to construct and manip-
ulate timers.

8.1.1 Setting and clearing timers

JavaScript provides us with two methods to create timers and two corresponding meth-
ods to clear (remove) them. All are methods of the window (global context) object.

 They’re described in table 8.1.

These methods allow us to set and clear timers that either fire a single time, or that
fire periodically at a specified interval. In practice, most browsers allow you to use
either clearTimeout() or clearInterval() to cancel either timer, but it’s recommended
that the methods be used in matched pairs if for nothing other than clarity.

Table 8.1 JavaScript’s timer manipulation methods (all methods of window)

Method Format Description

setTimeout id = setTimeout(fn,delay) Initiates a timer that will execute the
passed callback exactly once after the
delay has elapsed. A value that uniquely
identifies the timer is returned.

clearTimeout clearTimeout(id) Cancels (clears) the timer identified by the
passed value if the timer has not yet fired.

setInterval id = setInterval(fn,delay) Initiates a timer that will continually
execute the passed callback at the
specified delay interval, until canceled.
A value that uniquely identifies the timer
is returned.

clearInterval clearInterval(id) Cancels (clears) the interval timer identi-
fied by the passed value.
Licensed to Maxeta Technologies <account@maxetatech.com>

177How timers and threading work
 An important concept that needs to be understood with regard to JavaScript tim-
ers is that the timer delay isn’t guaranteed. The reason for this has a great deal to do
with the nature of JavaScript threading.

 Let’s explore that concept.

8.1.2 Timer execution within the execution thread

Until web workers come into the picture, all JavaScript code in a browser executes in a
single thread. One. Just one.

 The unavoidable result of this fact is that the handlers for asynchronous events,
such as interface events and timers, are only executed when there’s nothing else
already executing. This means that handlers must queue up to execute when a slot is
available, and that no handler will ever interrupt the execution of another.

 This is best demonstrated with a timing diagram, as shown in figure 8.1.
 There’s a lot of information to digest in figure 8.1, but understanding it com-

pletely gives us a better understanding of how asynchronous JavaScript execution
works. This diagram is one-dimensional, with time (in milliseconds) running from left
to right along the x axis. The boxes represent portions of JavaScript code under exe-
cution, extending for the amount of time they’re running. For example, the first block of
mainline JavaScript code executes for approximately 18 ms, the mouse-click block for
approximately 10 ms, and so on.

 Because JavaScript can only execute one block of code at a time due to its single-
threaded nature, each of these units of execution is blocking the progress of other
asynchronous events. This means that when an asynchronous event occurs (like a

0 10 20 30 40 50

Time
(in ms)

M
a
in

li
n

e

J
a
v
a
S

c
ri

p
t

M
o

u
s
e
 c

li
c
k

h
a
n

d
le

r

T
im

e
r

h
a
n

d
le

r

In
te

rv
a
l

h
a
n

d
le

r

In
te

rv
a
l

h
a
n

d
le

r

In
te

rv
a
l

h
a
n

d
le

r

10 ms timer
started

Mouse
clicked

Timer
expires

Interval Interval Interval

Interval

Interval

10 ms interval
started

Figure 8.1 A timing diagram that shows how mainline code and handlers execute
within a single thread
Licensed to Maxeta Technologies <account@maxetatech.com>

178 CHAPTER 8 Taming threads and timers
mouse click, a timer firing, or even the completion of an XMLHttpRequest), it gets
queued up to be executed when the thread next frees up. How this queuing actually
occurs varies from browser to browser, so consider this to be a simplification, but one
that’s close enough for us to understand the concepts.

 Starting out at time 0, during the execution of the first block of JavaScript, which
will take 18 ms to complete, a number of important events occur:

■ At 0 ms a timeout timer is initiated with a 10 ms delay, and an interval timer is
also initiated with a 10 ms delay.

■ At 6 ms the mouse is clicked.
■ At 10 ms the timeout timer expires and the first interval expires.

Under normal circumstances, if there were no code currently under execution, we’d
expect the mouse-click handler to be executed immediately at 6 ms and the timer
handlers to execute when they expire at 10 ms. Note, however, that none of these han-
dlers can execute at those times because the initial block of code is still executing.
Due to the single-threaded nature of JavaScript, the handlers are queued up in order
to be executed at the next available moment.

 When the initial block of code ends execution at 18 ms, there are three code
blocks queued up for execution: the click handler, the timeout handler, and the first
invocation of the interval handler. We’ll assume that the browser is going to use a FIFO
technique (first in, first out), but remember, the browser may choose a more compli-
cated algorithm if it so chooses. That means the waiting click handler (which we’ll
assume takes 10 ms to execute) begins execution.

 While the timeout handler is executing, the second interval expires at 20 ms.
Again, because the thread is occupied executing the timeout handler, the interval
handler can’t execute. But this time, because an instance of an interval callback is
already queued and awaiting execution, this invocation is dropped. The browser will
not queue up more than one instance of a specific interval handler.

 The click handler completes at 28 ms, and the waiting timeout handler, which we
expected to run at the 10 ms mark, actually ends up starting at the 28 ms mark. That’s
what was meant earlier by there being no guarantee that the delay that’s specified can
be counted on to determine exactly when the handler will execute.

 At 30 ms, the interval fires again, but once more, no additional instance is queued
because there’s already a queued instance for this interval timer.

 At 34 ms, the timeout handler finishes, and the queued interval handler
begins to execute. But that handler takes 6 ms to execute, so while it’s executing,
another interval expires at the 40 ms mark, causing the invocation of the interval
handler to be queued. When the first invocation finishes at 42 ms, this queued
handler executes.

 This time, the handler finishes (at 47 ms) before the next interval expires at 50 ms.
So the fifth firing of the interval doesn’t have its handler queued but executes as soon
as the interval expires.
Licensed to Maxeta Technologies <account@maxetatech.com>

179How timers and threading work
 The important concept to take away from all of this is that, because JavaScript is
single-threaded, only one unit of execution can ever be running at a given time, and
that we can never be certain that timer handlers will execute exactly when we expect.

 This is especially true of interval handlers. We saw in this example that even though
we scheduled an interval that we expected to fire at the 10, 20, 30, 40, and 50 ms marks,
only three of those instances executed at all, and at the 35, 42, and 50 ms marks.

 As we can see, intervals have some special considerations that don’t apply to time-
outs. Let’s look at those a tad more closely.

8.1.3 Differences between timeouts and intervals
At first glance, an interval may look like a timeout that periodically repeats itself. But
the differences are a little deeper than that. Let’s take a look at an example to better
illustrate the differences between setTimeout() and setInterval(), as shown in the fol-
lowing listing.

<script type="text/javascript">

setTimeout(function repeatMe() {
 /* Some long block of code... */
 setTimeout(repeatMe, 10);
}, 10);

setInterval(function() {
 /* Some long block of code... */
}, 10);

</script>

The two pieces of code in listing 8.1 may appear to be functionally equivalent, but they
aren’t. Notably, the setTimeout() variant of the code B will always have at least a 10 ms
delay after the previous callback execution (it may end up being more, but never less),
whereas setInterval() c will attempt to execute a callback every 10 ms regardless of
when the last callback was executed.

 Recall from the example of the previous section how the timeout callback is never
guaranteed to execute exactly when it’s fired. Rather than being fired every 10 ms, as
the interval is, it will reschedule itself for 10 ms after it gets around to executing.

 Let’s recap:

■ JavaScript engines execute only a single thread at a time, forcing asynchronous
events to queue up awaiting execution.

■ If a timer is blocked from immediately executing, it will be delayed until the
next available time of execution (which may be longer, but never shorter, than
the specified delay).

■ Intervals may end up executing back to back with no delay if they get backed up
enough, and multiple instances of the same interval handler will never be
queued up.

Listing 8.1 Two ways to create repeating timers

Sets up a timeout that
reschedules itself every
10 milliseconds

 b

Sets up an interval
that triggers every
10 milliseconds

 c
Licensed to Maxeta Technologies <account@maxetatech.com>

180 CHAPTER 8 Taming threads and timers
■ setTimeout() and setInterval() are fundamentally different in how their firing
frequencies are determined.

All of this is incredibly important knowledge. Knowing how a JavaScript engine han-
dles asynchronous code, especially with the large number of asynchronous events that
typically occur in the average scripted page, makes for a great foundation for building
advanced pieces of application code.

 In this section we used delay values that are fairly small; 10 ms showed up a lot, for
example. We’d like to find out whether or not those values are overly optimistic, so let’s
turn our attention to examining the granularity with which we can specify those delays.

8.2 Minimum timer delay and reliability
While it’s pretty obvious that we can specify timer delays of seconds, minutes, hours—
or whatever interval values we desire—what isn’t obvious is what the smallest practical
timer delay that we can choose might be.

 At a certain point, a browser is simply incapable of providing fine enough resolu-
tion on the timers in order to handle them accurately, because they themselves are
limited by the timing restrictions of the operating system.

 Up until just a few years ago, specifying delays as short as 10 ms was rather laugh-
ably overoptimistic. But there’s been a lot of recent focus on improving the perfor-
mance of JavaScript in the browsers, so we put it to the test. We set off an interval
timer, specifying a delay of 1 ms, and for the first 100 “ticks” of the timer, measured
the actual delay between interval invocations.

 The results are displayed in figures 8.2 and 8.3.
 These charts plot the number of times, out of the 100 tick run, that each interval

value was achieved.
 Under OS X, for Firefox we found that the average value was around 4 ms, almost

always with some much longer outlying results, such as the single interval that took 22
ms. Chrome was much more consistent and also averaged around 4 or 5 ms, while
Safari was rather slower, averaging out at 10 ms. Opera 11 proved to be the fastest
browser with a whopping 56 intervals out of 100 taking the prescribed 1 ms delay.

 The Windows results showed Firefox once again being the most sporadic, with
results all over the board and no clear peak. Chrome fared well with an average of 4
ms, whereas IE 9 clocked in with a rather miserable peak at 21 ms. Opera once again
took the commanding lead delivering all but one interval in the specified 1 ms.

NOTE These tests were conducted on a MacBook Pro with a 2.5 GHz Intel
Core 2 Duo processor, and 4 GB of RAM running OS X 10.6.7, and a Windows 7
laptop with an Intel Quad Q9550 2.83 GHz processor and 4 GB of RAM.

We can draw the conclusion that modern browsers are generally not yet able to realis-
tically and sustainably achieve interval delays to the granularity level of 1 ms, but some
of them are getting really, really close.
Licensed to Maxeta Technologies <account@maxetatech.com>

181Minimum timer delay and reliability
In our tests, we specified a delay of 1 ms, but you can also specify a value of 0 to get the
smallest possible delay. There’s one catch, though: Internet Explorer fumbles when
we provide a 0 ms delay to setInterval(); whenever a 0 ms delay is specified
for setInterval(), the interval executes the callback only once, just as if we had used
setTimeout() instead.

of ticks

milliseconds

Figure 8.2 Interval timer performance measured on OS X browsers shows that some
browsers get pretty close to 1 ms granularity; others aren’t so close.
Licensed to Maxeta Technologies <account@maxetatech.com>

182 CHAPTER 8 Taming threads and timers
There are a few other things that we can learn from these charts. The most important
is simply a reinforcement of what we learned previously: browsers don’t guarantee the
exact delay interval that we specify. Although specific delay values can be asked for,
the exact accuracy isn’t always guaranteed, especially with smaller values.

 This needs to be taken into account in our applications when using timers. If the
difference between 10 ms and 15 ms is problematic, or if you require finer granularity

of ticks

milliseconds

Figure 8.3 Interval timer performance as measured on Windows browsers is equally all over
the place.
Licensed to Maxeta Technologies <account@maxetatech.com>

183Dealing with computationally expensive processing
than the browsers are capable of delivering, you might have to rethink your approach,
as the browsers just aren’t capable of delivering that accurate a level of timing.

NOTE In most situations, closures are used to “pass” data into timer and
interval callbacks. But modern WebKit, Mozilla, and Opera browsers (but
not any version of IE from IE 9 and earlier) also allow us to pass extra argu-
ments on the setup call. For example, setTimeout(callback,interval,arg`1,
arg2,arg3) would cause arguments arg1, arg2, and arg3 to be passed to the tim-
eout callback.

With all that under our belts, let’s take a look at how our understanding of timers can
help us avoid some performance pitfalls.

8.3 Dealing with computationally expensive processing
The single-threaded nature of JavaScript is probably the largest “gotcha” in complex
JavaScript application development. While JavaScript is busy executing, user interac-
tion in the browser can become, at best, sluggish and, at worst, unresponsive. This can
cause the browser to stutter or seem to hang, because all updates to the rendering of a
page are suspended while JavaScript is executing.

 Because of this, reducing all complex operations that take any more than a few
hundred milliseconds into manageable portions becomes a necessity if we want to
keep the interface responsive. Additionally, some browsers (such as Firefox and
Opera) will produce a dialog box warning the user that a script has become “unre-
sponsive” if it has run nonstop for at least five seconds. Other browsers, such as that
on the iPhone, will silently kill any script running for more than five seconds.

 You may have been to a family reunion where a garrulous uncle won’t stop
talking and insists on telling the same stories over and over again. If no one else
gets a chance to break in and get a word in edgewise, the conversation’s not
going to be very pleasant for anyone (except for Uncle Bruce, of course). Like-
wise, code that hogs all the processing time results in an outcome that’s less than
desirable; producing an unresponsive user interface is never good. But there will
almost certainly arise situations in which we’ll need to process a significant
amount of data; situations such as manipulating a couple of thousand DOM ele-
ments, for example.

 These are occasions when timers can come to the rescue and become especially
useful. As timers are capable of effectively suspending the execution of a piece of
JavaScript until a later time, they can also break up the individual pieces of code into
fragments that aren’t long enough to cause the browser to hang.

 Taking this into account, we can convert intensive loops and operations into non-
blocking operations.

 Let’s look at the following example, in which a task is likely to take a long time.

Licensed to Maxeta Technologies <account@maxetatech.com>

184 CHAPTER 8 Taming threads and timers
<table><tbody></tbody></table>

<script type="text/javascript">

 var tbody = document.getElementsByTagName("tbody")[0];

 for (var i = 0; i < 20000; i++) {

 var tr = document.createElement("tr");

 for (var t = 0; t < 6; t++) {
 var td = document.createElement("td");
 td.appendChild(document.createTextNode(i + "," + t));
 tr.appendChild(td);
 }

 tbody.appendChild(tr);

 }

</script>

In this example we’re creating a total of 240,000 DOM nodes, populating a table with a
large number of cells. This is incredibly expensive and will likely hang the browser for
a noticeable period while executing, preventing the user from performing normal
interactions. Much in the same way that Uncle Bruce dominates the conversation at
the family get-together.

 What we need to do is shut Uncle Bruce up at regular intervals so that other peo-
ple can get a chance to join the conversation. In our code, we can introduce timers
into this situation to create just such “breaks in the conversation,” as shown in the
next listing.

<script type="text/javascript">

 var rowCount = 20000;
 var divideInto = 4;
 var chunkSize = rowCount/divideInto;
 var iteration = 0;

 var table = document.getElementsByTagName("tbody")[0];

 setTimeout(function generateRows(){
 var base = (chunkSize) * iteration;
 for (var i = 0; i < chunkSize; i++) {
 var tr = document.createElement("tr");
 for (var t = 0; t < 6; t++) {
 var td = document.createElement("td");
 td.appendChild(
 document.createTextNode((i + base) + "," + t +
 "," + iteration));
 tr.appendChild(td);
 }
 table.appendChild(tr);

Listing 8.2 A long-running task

Listing 8.3 Using a timer to break up a long-running task

Finds the <tbody> element
that we’re going to create a

boatload of rows for.

Makes 20,000 rows.
I’d say that qualifies

as a “boatload.”

Creates an
individual row.

For each row,
creates six cells, each

with a text node.Attaches the new
row to its parent.

Sets up
the data

 b

Computes where
we left off

last time c
Licensed to Maxeta Technologies <account@maxetatech.com>

185Dealing with computationally expensive processing
 }
 iteration++;
 if (iteration < divideInto)
 setTimeout(generateRows,0);
 },0);

</script>

In this modification to our example, we’ve broken up our lengthy operation into four
smaller operations, each creating its own share of DOM nodes. These smaller opera-
tions are much less likely to interrupt the flow of the browser.

 Note how we’ve set it up so that the data values controlling the operation are col-
lected into easily tweakable variables B, should we find that we need to break the
operations up into, let’s say, ten parts instead of four.

 Also important to note is the little bit of math that we needed to do to keep track
of where we left off in the previous iteration c, and how we automatically schedule
the next iterations until we determine that we’re done d.

 What’s rather impressive is just how little our code had to change in order to
accommodate this new, asynchronous approach. We have to do a little more work
to keep track of what’s going on, to ensure that the operation is correctly conducted,
and to schedule the execution parts. But beyond that, the core of the code looks very
similar to what we started off with.

 The most perceptible change resulting from this technique, from the user’s per-
spective, is that a long browser hang is now replaced with four (or however many we
choose) visual updates of the page. Although the browser will attempt to execute our
code segments as quickly as possible, it will also render the DOM changes after each
step of the timer. In the original version of the code, it needed to wait for one large
bulk update.

 Much of the time, these types of updates are imperceptible to the user, but it’s
important to remember that they do occur, and we should strive to make sure that any
code we introduce into the page doesn’t perceptibly interrupt the normal operation
of the browser.

 One situation in which this technique has served one of your authors particularly
well was in an application constructed to compute schedule permutations for college
students. Originally, the application was a typical CGI (communicating from the client
to the server, where the schedules were computed and sent back), but it was converted
to move all schedule computation to the client side. A view of the schedule computa-
tion screen can be seen in figure 8.4.

 These operations were quite expensive (running through thousands of permuta-
tions in order to find the correct results). The resulting performance problems were
solved by breaking up clumps of schedule computations into tangible bites, updating
the user interface with a percentage of completion as it went along. In the end, the
user was presented with a usable interface that was fast, responsive, and highly usable.

 It’s often surprising just how useful this technique can be. You’ll frequently find it
being used in long-running processes such as test suites, which we’ll be discussing at

Schedules the
next phase d
Licensed to Maxeta Technologies <account@maxetatech.com>

186 CHAPTER 8 Taming threads and timers
the end of this chapter. Most importantly, though, this technique shows us just how
easy it is to work around the restrictions of the single-threaded browser environment
using timers, while still providing a useful experience to the user.

 But all is not completely rosy; handling large numbers of timers can get unwieldy.
Let’s see what we can do about that.

8.4 Central timer control
A problem that can arise in the use of timers is managing a large number of them.
This is especially critical when dealing with animations, because we’ll likely be
attempting to manipulate a large number of properties simultaneously, and we’ll need
a way to manage that.

 Managing multiple timers is problematic for a number of reasons. There’s not only
the issue of needing to retain references to lots of interval timers that, sooner or later,
must be cancelled (though we know how to help tame that kind of mess with clo-
sures), but also of interfering with the normal operation of the browser. We saw previ-
ously that, by making sure that no one timer-handler invocation performs excessively
lengthy operations, we can prevent our code from blocking other operations, but
there are other browser considerations. One of these is garbage collection.

 Firing off a large number of simultaneous timers will increase the chances of a
garbage-collection task occurring in the browser. Garbage collection, roughly speaking,
is when the browser goes through its allocated memory and tries to tie up any loose ends
by removing unused objects. Timers are a particular problem, because they’re generally

Figure 8.4 A web-based schedule-generation application with client-side
computation
Licensed to Maxeta Technologies <account@maxetatech.com>

187Central timer control
managed outside of the flow of the normal single-threaded JavaScript engine (through
other browser threads).

 While some browsers are more capable of handling this situation, others can
exhibit long garbage-collection cycles. You might have noticed this when you see a
nice, smooth animation in one browser, but view it in another and see it stutter its way
to completion. Reducing the number of simultaneous timers being used will drasti-
cally help with this situation, and this is why all modern animation engines utilize a
technique called a central timer control.

 Having a central control for our timers gives us a lot of power and flexibility:

■ We only need one timer running per page at a time.
■ We can pause and resume the timers at will.
■ The process for removing callback functions is trivialized.

Let’s take a look at an example that uses this technique for managing multiple func-
tions that are animating separate properties. First, we’ll create a facility for managing
multiple handler functions with a single timer, as shown in the next listing.

<script type="text/javascript">

var timers = {

 timerID: 0,
 timers: [],

 add: function(fn) {
 this.timers.push(fn);
 },

 start: function() {
 if (this.timerID) return;
 (function runNext() {
 if (timers.timers.length > 0) {
 for (var i = 0; i < timers.timers.length; i++) {
 if (timers.timers[i]() === false) {
 timers.timers.splice(i,1);
 i--;
 }
 }
 timers.timerID = setTimeout(runNext, 0);
 }
 })();
 },

 stop: function() {
 clearTimeout(this.timerID);
 this.timerID = 0;
 }
};

</script>

Listing 8.4 A central timer control to manage multiple handlers

Declares the timer
control object b

Records state c

Creates the function
to add handlers d

Creates the function
to start a timer e

Creates the function
to stop a timer
Licensed to Maxeta Technologies <account@maxetatech.com>

188 CHAPTER 8 Taming threads and timers
In listing 8.4 we’ve created a central control structure B, to which we can add any
number of timer callback functions, and through which we can start and stop their
execution. Additionally, we’ll allow the callback functions to remove themselves at any
time by returning false, which is much more convenient than the typical clear-
Timeout() call.

 Let’s step through the code to see how it works.
 To start, all of the callback functions are stored in an array named timers, along

with the ID of any current timer c. These variables constitute the only state that our
timer construct needs to maintain.

 The add() method accepts a callback handler d and simply adds it to the
timers array.

 The real meat comes in with the start() method e. In this method, we first verify
that there isn’t already a timer running (by checking if the timerID member has a
value), and if we’re in the clear, we execute an immediate function to start our cen-
tral timer.

 Within the immediate function, if there are any registered handlers, we run
though a loop and execute each handler. If a handler returns false, we remove it from
the array of handlers and schedule the next “tick” of the animation.

 Putting this construct to use, we create an element to animate:

<div id="box">Hello!</div>

Then we start the animation with this code:

var box = document.getElementById("box"), x = 0, y = 20;

timers.add(function() {
 box.style.left = x + "px";
 if (++x > 50) return false;
});

timers.add(function() {
 box.style.top = y + "px";
 y += 2;
 if (y > 120) return false;
});

timers.start();

We get a reference to the element, add a handler that moves the element horizontally
and another handler that moves it vertically, and start the whole shebang.

 The result, after the animation completes, is shown in figure 8.5.
 It’s important to note that organizing timers in this manner ensures that the call-

back functions will always execute in the order in which they’re added. That isn’t
always guaranteed with normal timers, where the browser could choose to execute
one before another.

 This manner of timer organization is critical for large applications or any form of
JavaScript animations. Having a solution in place will certainly help in any future
application development and especially when creating animations.
Licensed to Maxeta Technologies <account@maxetatech.com>

189Asynchronous testing
In addition to animations, central timer control can help us on the testing front. Let’s
see how.

8.5 Asynchronous testing
Another situation in which a centralized timer control comes in mighty handy is when
we wish to perform asynchronous testing. The issue here is that when we want to per-
form testing on actions that may not complete immediately (such as handlers for a
timer, or even an XMLHttpRequest) we need to break our test suite out so that it works
completely asynchronously.

 As we saw in test examples in the previous chapters, we can easily run the tests as
we come to them, and most of the time this is fine. But when we need to do asyn-
chronous testing, we need to break all of those tests out and handle them sepa-
rately, as in the following listing. You shouldn’t be surprised to find that this code
looks somewhat familiar.

<script type="text/javascript">

 (function() {

 var queue = [], paused = false;

 this.test = function(fn) {
 queue.push(fn);
 runTest();
 };

 this.pause = function() {
 paused = true;
 };

 this.resume = function() {
 paused = false;
 setTimeout(runTest, 1);
 };

 function runTest() {
 if (!paused && queue.length) {
 queue.shift()();
 if (!paused) resume();

Listing 8.5 A simple asynchronous test suite

Figure 8.5 After running
multiple animation handlers,
the element has moved down
and across the page.

Retains state

Defines the test
registration function

Defines the function
to pause testing

Defines the
resume function

Runs the tests
Licensed to Maxeta Technologies <account@maxetatech.com>

190 CHAPTER 8 Taming threads and timers
 }
 }
 })();
</script>

The single most important aspect in listing 8.5 is that each function passed to test()
will contain, at most, one asynchronous test. Its asynchronicity is defined by the use of
the pause() and resume() functions, to be called before and after the asynchronous
event. Really, this code is nothing more than a means of keeping asynchronous behavior-
containing functions executing in a specific order (it doesn’t have to be used exclu-
sively for test cases, but that’s where it’s especially useful).

 Let’s look at the code necessary to make this behavior possible, which is very simi-
lar to the code we introduced with listing 8.4. The bulk of the functionality is con-
tained within the resume() and runTest() functions. It behaves very similarly to the
start() method in the previous example but handles a queue of data instead. Its sole
purpose is to dequeue a function and execute it if there is one waiting. Otherwise, it
completely stops the interval from running.

 The important point here is that because the queue-handling code is completely
asynchronous (being contained within an interval), it’s guaranteed to attempt execu-
tion after we’ve already called our pause() function.

 This brief piece of code forces the test suite to behave in a purely asynchronous
manner while still maintaining the order of test execution (which can be very critical
in some test suites, if their results are destructive and could affect other tests). Thank-
fully, we can see that it doesn’t require very much overhead at all to add reliable asyn-
chronous testing to an existing test suite with the effective use of timers.

8.6 Summary
Learning about how JavaScript timers function has been illuminating! Let’s review
what we’ve discovered:

■ Seemingly simple features, timers are actually quite complex in their imple-
mentation. Taking all their intricacies into account, however, gives us great
insight into how we can best exploit them for our gain.

■ It has become apparent that timers end up being especially useful in complex
applications, including
– Computationally intensive code
– Animations
– Asynchronous test suites

■ Due to their ease of use (especially with the addition of closures), they tend to
make even the most complex situations easy to manage.

So far, we’ve discussed a number of features and techniques that we can use to create
sophisticated code while keeping its complexity in check. In the next chapter, we’ll
take a look at how JavaScript performs runtime evaluations and how we can harness
that power to our own ends.
Licensed to Maxeta Technologies <account@maxetatech.com>

Part 3

Ninja training

Now that you’ve snatched the pebble and graduated from your apprentice-
ship, this part of the book takes the fundamentals you’ve learned and teaches
you how to survive in the often-hostile environment of the browser. Techniques
for dealing with the difficult situations that the browsers put us into are pre-
sented, based on the knowledge garnered from the minds of the greatest ninjas.

 In chapter 9, we’ll charge right into the advanced topic of code evaluation—
a technique usually reserved for the mightiest of JavaScript warriors, and one
that will be added to your arsenal.

 Chapter 10 will cover the with statement, a controversial language construct
that, although contraindicated for new code, is liable to exist in any legacy code
you need to deal with.

 In chapter 11, you’ll learn how to deal with cross-browser issues and survive
the ordeal.

 Your ninja training completes with chapter 12, which explores the realm of
attributes, object properties, and related subjects such as styles and CSS.

 After chapter 12, if you’re thirsting for more, a fourth part of this book—
Master Training—continues with the dark arts of JavaScript mastery.

Licensed to Maxeta Technologies <account@maxetatech.com>

Licensed to Maxeta Technologies <account@maxetatech.com>

Ninja alchemy:
runtime code evaluation
One of the many powerful abilities that distinguish JavaScript from many other lan-
guages is its ability to dynamically interpret and execute pieces of code at runtime.
Code evaluation is simultaneously a powerful, as well as a frequently misused, fea-
ture of JavaScript. Understanding the situations in which it can and should be used,
along with the best techniques for using it, can give us a marked advantage when
creating advanced application code.

 In this chapter, we’ll explore the various ways of interpreting code at runtime
and the situations in which this powerful ability can lift our code into the big
leagues. We’ll learn about the various mechanisms that JavaScript provides to
cause code to be evaluated at runtime, and we’ll see how runtime evaluation can

This chapter covers
■ How runtime code evaluation works
■ Different techniques for evaluating code
■ Using evaluation in applications
■ Decompiling functions
■ Namespacing
■ Compressing and obfuscating
193

Licensed to Maxeta Technologies <account@maxetatech.com>

194 CHAPTER 9 Ninja alchemy: runtime code evaluation
be applied to various interesting scenarios that we’re likely to run into when creat-
ing web applications.

 To start, let’s find out just how we can cause code to be evaluated at runtime.

9.1 Code evaluation mechanisms
Within JavaScript there are a number of different mechanisms for evaluating code.
Each has its own advantages and disadvantages, and which one we use should be cho-
sen carefully based upon the context in which it’s being employed.

 These various means include

■ The eval() function
■ Function constructors
■ Timers
■ The <script> element

While we examine each of these mechanisms, we’ll discuss evaluation scope and then
learn safe practices to keep in mind when evaluating code at runtime.

 Let’s start by examining the most common way that page authors trigger
code evaluation.

9.1.1 Evaluation with the eval() method
The eval() method is likely the most commonly used means of evaluating code at run-
time. Defined as a function in global scope, the eval() method executes the code
passed into it in string form, within the current context. The result returned from the
method is the result of the last evaluated expression.

BASIC FUNCTIONALITY

Let’s look at the basic functionality of eval() in action. We expect two fundamental
things from eval():

■ It will evaluate the code passed to it as a string.
■ It will execute that code in the scope within which eval() is called.

Take a look at the following code, which attempts to prove these assertions.

<script type="text/javascript">

 assert(eval("5 + 5") === 10,
 "5 and 5 is 10");

 assert(eval("var ninja = 5;") === undefined,
 "no value was returned");
 assert(ninja === 5, "The variable ninja was created");

 (function(){
 eval("var ninja = 6;");
 assert(ninja === 6,
 "evaluated within the current scope.");
 })();

Listing 9.1 Basic test of the eval() method

Tests a simple expression b

Tests a valueless
evaluation

 c

Verifies the
side effect d

Tests evaluation
scope e
Licensed to Maxeta Technologies <account@maxetatech.com>

195Code evaluation mechanisms
 assert(window.ninja === 5,
 "the global scope was unaffected");
 assert(ninja === 5,
 "the global scope was unaffected");

</script>

In this listing, we test a number of basic assumptions about eval(). The results of these
tests are shown in figure 9.1.

 First, we send a string containing a simple expression into the eval() method B
and verify that it produces the expected result.

 Then we try a statement that produces no value, the assignment ninja=5, and verify
that the expected value (none) is returned c. But wait, that’s not enough of a test.
We expected no result, but was that because the expression was evaluated and pro-
duced no result or because nothing happened at all? A further test is needed.

 We expect the code to be evaluated in the current scope, in this case the global
scope, so we’d expect a side effect of the evaluation to be the creation of a globally
scoped variable named ninja. And indeed, another simple test d bears that out.

 Next, we want to test that an evaluation in a nonglobal scope works as expected.
We create an immediate function and evaluate the phrase varninja=6; within it e. A
test that the variable exists with the expected value is conducted. But once again,
that’s not quite enough. Is ninja evaluating to 6 because we created a new variable in
the local scope, or did we modify the global ninja variable?

 One further test f proves that the global scope was untouched.

EVALUATION RESULTS

The eval() method will return the result of the last expression in the passed code
string. For example, if we were to call

eval('3+4;5+6')

the result would be 11.
 It should be noted that anything that isn’t a simple variable, primitive, or assign-

ment will need to be wrapped in parentheses in order for the correct value to be
returned. For example, if we wanted to create a simple object using eval(), we might
be tempted to write this:

var o = eval('{ninja: 1}');

Tests for scope
“leakage” f

Figure 9.1 Proving that eval() can
evaluate various expressions and is
confined to the local scope
Licensed to Maxeta Technologies <account@maxetatech.com>

196 CHAPTER 9 Ninja alchemy: runtime code evaluation
But that wouldn’t do what we want. Rather, we’d need to surround the object literal
with parentheses as follows:

var o = eval('({ninja: 1})');

Let’s run some more tests, as shown in the next listing.

<script type="text/javascript">

 var ninja = eval("({name:'Ninja'})");
 assert(ninja != undefined,"the ninja was created");
 assert(ninja.name === "Ninja",
 "and with the expected property");

 var fn = eval("(function(){return 'Ninja';})");
 assert(typeof fn === 'function',
 "the function was created");
 assert(fn() === "Ninja",
 "and returns expected value");

 var ninja2 = eval("{name:'Ninja'}");
 assert(ninja2 != undefined,"ninja2 was created");
 assert(ninja2.name === "Ninja",
 "and with the expected property");
</script>

Here we create an object B and a function c on the fly using eval(). Note how in
both cases, the phrases needed to be enclosed in parentheses. As an exercise, make
a copy of listing-9.2.html, remove the parentheses, and load the file. See how far
you get!

 If you ran this test under Internet Explorer 8 or earlier, you may have gotten a
nasty surprise. Versions of IE prior to IE 9 have a problem executing that particular
syntax. We’re forced to use some Boolean-expression trickery to get the call to eval()
to execute correctly. The following technique from jQuery creates a function using
eval() in broken versions of IE:

var fn = eval("false||function(){return true;}");
assert(fn() === true,
 "The function was created correctly.");

This particular issue is fixed in IE 9.
 You might be wondering why we’d ever want to create a function in this manner.

Well, we usually wouldn’t. If we know what function we want to create, we’d usually
define it using one of the means that we explored in chapter 3. But what if we don’t
know in advance what the syntax of the function is? We might want to generate the

Listing 9.2 Testing returned values from eval()

Creates an object from a string containing
an object literal and tests that not only

was the object created, but that it
has the expected name property. b

Creates a function from a
function literal in a string and

tests that the function was
created and returns the

expected value when called.
 c

Tries to create another version of the first test, leaving off
the parentheses. The first test passes (something is created), but the

second test fails because the object was not created as expected. (Poke
around in a JavaScript debugger to see what was created.)
Licensed to Maxeta Technologies <account@maxetatech.com>

197Code evaluation mechanisms
code at runtime, or perhaps obtain the code from someone else. (If that latter possi-
bility sets off your alarms, fear not; we’ll explore security considerations in just a bit.)

 Just as when we create a function in a particular scope using “normal” means, func-
tions created with eval() inherit the closure of that scope—a ramification of the fact
that eval() executes within the local scope.

 It turns out that if we don’t need that additional closure, there’s another alterna-
tive that we can make use of.

9.1.2 Evaluation via the Function constructor

All functions in JavaScript are an instance of Function; we learned that back in chapter
3. There we saw how we could create named functions using syntax such as
functionname(...){...}, or omit the name to create anonymous functions.

 But we can also instantiate functions directly using the Function constructor, as
shown in the following code:

var add = new Function("a", "b", "return a + b;");
assert(add(3,4) === 7, "Function created and working!");

The last argument of a variable argument list to the Function constructor is always the
code that will become the body of the function. Any preceding arguments represent
the names of the parameters for the function.

 So our previous example is equivalent to the following:

var add = function(a,b) { return a + b; }

While these are functionally equivalent, a glaring difference is that in the Function
constructor approach, the function body is provided by a runtime string.

 Another difference that’s vitally important to realize is that no closures are created
when functions are created via the Function constructor. This can be a good thing
when we don’t want to incur any of the overhead associated with unneeded closures.

9.1.3 Evaluation with timers

Another way that we can cause strings of code to be evaluated, and in this case asyn-
chronously, is through the user of timers.

 Normally, as we saw in chapter 8, we’d pass an inline function or a function reference
to a timer. This is the recommended use of the setTimeout() and setInterval() methods,
but these methods also accept strings that will be evaluated when the timers fire.

 Consider this example:

var tick = window.setTimeout('alert("Hi!")',100);

It’s rather rare that we’d need to use this behavior (it’s roughly equivalent to using the
newFunction() approach), and its use is discouraged except in the cases where the code to
be evaluated must be a runtime string.
Licensed to Maxeta Technologies <account@maxetatech.com>

198 CHAPTER 9 Ninja alchemy: runtime code evaluation
9.1.4 Evaluation in the global scope

We stressed, when discussing the eval() method, that the evaluation executes in the
scope within which eval() is called, and we proved it with the test in listing 9.1. But fre-
quently, we may want to evaluate strings of code in the global scope despite the fact
that it may not be the current execution scope.

 For example, within some functions we may want to execute code in the global
scope, as follows:

(function(){
 eval("var test = 5;");
})();

assert(test === 5,
 "Variable created in global scope");

If we expected the variable test to be created in the global scope as a result of the exe-
cution of the immediate function, our test results would be discouraging—the test
fails. Because the execution scope of the evaluation is within the immediate function,
so is the variable scope.

 The situation is depicted in figure 9.2.
 A naïve solution would be to change the code to be evaluated as follows:

eval("window.test = 5;");

Although this would cause the variable to be defined in the global scope, it doesn’t
change the scope in which the evaluation takes place, and any other expectations we
have about scope will still be local rather than global. In this example, we’re simply
assigning a number literal, but it becomes important if we start pointing to variables
from the local scope.

 But there’s a tactic that we can use in modern browsers to achieve our goal: inject-
ing a dynamic <script> tag into the document with the script contents that we want
to execute.

 Andrea Giammarchi (a self-professed JavaScript Jedi and PHP ninja) developed a
technique for making this work properly across multiple platforms.

NOTE We won’t even attempt to distinguish between what constitutes a Jedi
versus a ninja. We’ll just acknowledge that both exhibit a mastery of their cho-
sen craft.

His original work can be found on his Web Reflection blog at http://webreflection
.blogspot.com/2007/08/global-scope-evaluation-and-dom.html. An adaptation can be
found in the following listing.

<script type="text/javascript">

 function globalEval(data) {
 data = data.replace(/^\s*|\s*$/g, "");

Listing 9.3 Evaluating code in the global scope

Fails!

Defines the global
eval function b
Licensed to Maxeta Technologies <account@maxetatech.com>

http://webreflection.blogspot.com/2007/08/global-scope-evaluation-and-dom.html
http://webreflection.blogspot.com/2007/08/global-scope-evaluation-and-dom.html

199Code evaluation mechanisms
 if (data) {
 var head = document.getElementsByTagName("head")[0] ||
 document.documentElement,
 script = document.createElement("script");

 script.type = "text/javascript";
 script.text = data;

 head.appendChild(script);
 head.removeChild(script);
 }
 }

 window.onload = function() {
 (function() {
 globalEval("var test = 5;");
 })();

 assert(test === 5, "The code was evaluated globally.");
 };

</script>

The code for this is surprisingly simple. In place of eval(), we define a function
named globalEval() B that we can call whenever we want an evaluation to take place
in the global scope.

 This function strips any leading and trailing whitespace from the passed string
(review chapter 7 on regular expressions if that statement doesn’t make sense to you),
and then, locating either the <head> element of the DOM or the document itself, we
create a detached <script> element c.

 We set the type of the script element, and then load its body with the passed string
to be evaluated.

 Attaching the script element to the DOM as a child of the head element d causes
the script to be evaluated in the global scope. Then, having done its duty, the script ele-
ment is unceremoniously discarded e. The results of the test are shown in figure 9.3.

 A common use case for this code is when we’re dynamically executing code
returned from a server. It’s almost always a requirement that code of that nature be
executed within the global scope, making the use of our new function a necessity.

 But can we trust that server?

9.1.5 Safe code evaluation

One question that frequently arises with respect to code evaluation concerns the safe
execution of JavaScript code. In other words, is it possible to safely execute untrusted
JavaScript on our pages without compromising the integrity of the site? After all, if we
didn’t provide the code to be evaluated, goodness knows what it could contain!

 Some naïve coder might supply us with a string of code that executes an infinite
loop, or removes necessary DOM elements, or tromps all over vital data. Or, even
worse, a malicious hooligan could purposefully inject code that compromises the
security of the site.

Creates a
script node c

Attaches it to
the DOM d

Blows it away e
Licensed to Maxeta Technologies <account@maxetatech.com>

200 CHAPTER 9 Ninja alchemy: runtime code evaluation
Generally, the answer to the question is “no.” There are simply too many ways that
arbitrary code can skirt around any barriers put forth and can result in code getting
access to information that it’s not supposed to view, or cause other problems for us.

 There is hope, however. A Google project named Caja attempts to create a translator
for JavaScript that converts JavaScript into a safer form that’s immune to malicious attacks.
You can find more information on Caja at http://code.google.com/p/google-caja/.

 As an example, look at the following code:

var test = true;
(function(){ var foo = 5; })();
Function.prototype.toString = function(){};

Global scope

Things in the global

scope can't see into

lower scopes, so test is

invisible.

eval("var test = 5;");

var test;

Where's
test?

Scope of immediate function

Creates variable
within the

current scope

Figure 9.2 The code evaluated inside the
immediate function results in a variable created
inside that scope and invisible to other scopes.
Licensed to Maxeta Technologies <account@maxetatech.com>

http://code.google.com/p/google-caja/

201Function “decompilation”
Caja will cajole that code into the following:

___.loadModule(function (___, IMPORTS___) {
{
 var Function = ___.readImport(IMPORTS___, 'Function');
 var x0___;
 var x1___;
 var x2___;
 var test = true;
 ___.asSimpleFunc(___.primFreeze(___.simpleFunc(function () {
 var foo = 5;
 })))();
 IMPORTS___['yield'] ((x0___ = (x2___ = Function,
 x2___.prototype_canRead___?
 x2___.prototype: ___.readPub(x2___, 'prototype')),
 x1___ = ___.primFreeze(___.simpleFunc(function () {})),
 x0___.toString_canSet___? (x0___.toString = x1___):
 ___.setPub(x0___, 'toString', x1___)));
}
});
}

Note the extensive use of built-in methods and properties to verify the integrity of the
data, most of which is verified at runtime. Also note that all those gnarly names with
the multiple underscores are an attempt to not accidentally collide with other names
that might be in use on the page.

 The desire for securely executing random JavaScript code frequently stems from
wanting to create mashups and safe advertisement embedding without worrying about
security becoming compromised. We’re certainly going to see a lot of work in this
realm, and Google Caja may lead the way.

 OK, we now know a number of ways to take a string and get it converted to code
that’s immediately evaluated. What about going in the opposite direction?

9.2 Function “decompilation”
Most JavaScript implementations also provide a means to “decompile” already-evaluated
JavaScript code.

Figure 9.3 We can execute
evaluated code in the global
context using a bit of DOM
manipulation trickery
Licensed to Maxeta Technologies <account@maxetatech.com>

202 CHAPTER 9 Ninja alchemy: runtime code evaluation
 Back in chapter 6, we called this process serialization, but the term decompile is also
used. But we’re certainly using the term decompile here quite liberally. In most con-
texts, to decompile would mean to reconstitute source code from assembly or byte code,
which clearly isn’t the case with JavaScript. But aside from serialization (which also has
its semantic issues) there really isn’t any readily appropriate term, and “de-evaluate”
doesn’t roll off the tongue easily, so we’ll use “decompile” in this section while
acknowledging that it may not be the most accurate term in this context.

 As complicated as decompiling may sound, it’s actually quite simple, and it’s per-
formed by the toString() method of functions. Let’s test this in the next listing.

<script type="text/javascript">

 function test(a){ return a + a; }

 assert(test.toString() ===
 "function test(a){ return a + a; }",
 "Function decompiled");

</script>

In this test, we create a simple function named test B and then assert that the func-
tion’s toString() method returns the original text of the function c.

 There’s one thing to be aware of: the value returned by toString() will contain all
the whitespace of the original declaration, including line terminators. For testing pur-
poses, we punted in listing 9.4, defining a simple function on a single line. If you make
a copy of the file and fool around with the formatting of the function declaration,
you’ll find that the test fails until you change the test string to match the exact format-
ting of the declaration. So be aware that the whitespace and formatting of a function
body need to be taken into account when using function decompilation.

 The act of decompilation has a number of potential uses, especially in the area of
macros and code rewriting. One of the more interesting uses is one presented in the
Prototype JavaScript library, where the code decompiles a function in order to read out
its arguments, resulting in an array of named arguments. This is frequently used to
introspect into functions to determine what sort of values they’re expecting to receive.

 The following listing shows a simplification of the code in Prototype to infer func-
tion parameter names.

<script type="text/javascript">

 function argumentNames(fn) {
 var found = /^[\s\(]*function[^(]*\(\s*([^)]*?)\s*\)/
 .exec(fn.toString());
 return found && found[1] ?
 found[1].split(/,\s*/) :
 [];
 }

Listing 9.4 Decompiling a function into a string

Listing 9.5 A function for finding the argument names of a function

Defines the
function b

Tests decompilation c

Finds the
argument list b

Splits the list c
Licensed to Maxeta Technologies <account@maxetatech.com>

203Function “decompilation”
 assert(argumentNames(function(){}).length === 0,
 "Works on zero-arg functions.");

 assert(argumentNames(function(x){})[0] === "x",
 "Single argument working.");

 var results = argumentNames(function(a,b,c,d,e){});
 assert(results[0] == 'a' &&
 results[1] == 'b' &&
 results[2] == 'c' &&
 results[3] == 'd' &&
 results[4] == 'e',
 "Multiple arguments working!");

</script>

The function comprises just a few lines of code but uses a lot of advanced JavaScript
features in those few statements. First, the function decompiles the passed function
and uses a regular expression to extract the comma-delimited argument list B. (We
covered regular expressions in chapter 7, if you need a refresher.)

 Note that because the exec() method expects a string, we could have left the
toString() off the function argument, and it would have been implicitly called. But we
included it here explicitly for clarity.

 Then, the result of that extraction is split into its component values, performing
checks to make sure that cases such as zero-argument lists are accounted for c.

 Finally, we test that zero-argument d, single-argument e, and multi-argument f
cases work as expected, as shown in figure 9.4.

 There’s an important point to take into consideration when working with func-
tions in this manner: it’s possible that a browser may not support decompilation.
While there aren’t many that don’t, one such browser is Opera Mini. If that’s on your
list of supported browsers, you’ll need to take that into consideration in code that uses
function decompilation.

 As emphasized previously in this book (and particularly in upcoming chapters), we
certainly don’t want to resort to browser detection to determine whether function
decompilation is supported. Rather, we’ll use feature simulation (which we’ll discuss
at length in chapter 11) to test whether a browser supports decompilation. One
means could be as follows:

Tests the
zero-arg case d

Tests the
single-arg case e

Tests the
multi-arg case
 f

Figure 9.4 We can use function
decompilation to do fancy things
such as inferring the names of
arguments to a function.
Licensed to Maxeta Technologies <account@maxetatech.com>

204 CHAPTER 9 Ninja alchemy: runtime code evaluation
var FUNCTION_DECOMPILATION = /abc(.|\n)*xyz/.test(function(abc){xyz;});
assert(FUNCTION_DECOMPILATION,
 "Function decompilation works in this browser");

Again, using regular expressions (which are a sadly underused workhorse in Java-
Script), we pass a function to the test() method (here letting the invocation of
toString() happen implicitly because the method expects a string) and store the result in
a variable for later use (or for testing, as shown here).

 At this point, we’ve covered the various means of performing runtime code evalua-
tion; now let’s put that knowledge into action.

9.3 Code evaluation in action
We saw in section 9.1 that there are a number of ways in which code evaluation can be
performed. We can use this ability for both interesting and practical purposes
throughout our code. Let’s examine some examples of evaluation in order to get a
better understanding of when and where we can or should use it in our code.

9.3.1 Converting JSON
Probably the most widespread use of runtime evaluation is in converting JSON strings
into their JavaScript object representations. As JSON data is simply a subset of the
JavaScript language, it’s perfectly capable of being evaluated as JavaScript code.

 Most modern browsers support the native JSON object with its parse() and
stringify() methods, but a number of earlier browsers that don’t provide this object
are still in the wild. For these browsers, it’s still important to know how to deal with
JSON without window.JSON.

 But as frequently happens to the best of plans, there is one minor gotcha that we
have to take into consideration. We need to wrap the text representing our constructs
in parentheses in order for it to evaluate correctly. That’s quite simple to do (see the
next listing); we just need to remember to do it.

<script type="text/javascript">

 var json = '{"name":"Ninja"}';

 var object = eval("(" + json + ")");

 assert(object.name === "Ninja",
 "My name is Ninja!");

</script>

Pretty simple stuff—and it performs well in most JavaScript engines.
 But there’s a major caveat to using eval() for JSON parsing: often, JSON data is

coming from a remote server, and, as pointed out earlier, blindly executing untrusted
code from a remote server is rarely a good thing.

 The most popular JSON converter script is written by Douglas Crockford, the origi-
nal creator of the JSON markup. In it, he does some initial parsing of the JSON string

Listing 9.6 Converting a JSON string into a JavaScript object

Defines the source JSON that represents an
object with a single property

Converts the JSON to
a JavaScript object

Tests that the
conversion was successful
Licensed to Maxeta Technologies <account@maxetatech.com>

https://github.com/douglascrockford/JSON-js

205Code evaluation in action
in an attempt to prevent any malicious information from passing through. The full
code can be found on GitHub at https://github.com/douglascrockford/JSON-js.

 Douglas Crockford’s function performs some important preprocessing prior to the
actual evaluation:

■ Guards against certain Unicode characters that can cause problems in some
browsers

■ Guards against non-JSON patterns that could indicate malicious intent, includ-
ing the assignment operator and the new operator

■ Makes sure that only JSON-legal characters are included

If the JSON that’s to be evaluated comes from our own code and servers, or from some
other trusted source, we usually don’t need to worry about malicious code injection
(although a healthy dose of paranoia is never a bad thing in this respect). But when
we have no reason to trust the JSON that we’re going to evaluate, using safeguards
such as those provided by Douglas Crockford is just prudent.

 The subject of dealing with untrusted code is explored in far greater depth in the
following Manning books:

■ Single Page Web Applications by Michael S. Mikowski and Josh C. Powell (http://
www.manning.com/mikowski/)

■ Third-Party JavaScript by Ben Vinegar and Anton Kovalyov (http://manning
.com/vinegar/)

Now let’s look at another common use of runtime evaluation.

9.3.2 Importing namespaced code

In chapter 3, we talked about namespacing code to keep from polluting the cur-
rent context—usually the global context. And that’s a good thing. But what about
when we want to take code that’s been namespaced and bring it into the current
context deliberately?

 This can be a challenging problem, considering that there’s no simple or sup-
ported way to do it in the JavaScript language. Most of the time, we have to resort to
actions similar to the following:

var DOM = base2.DOM;
var JSON = base2.JSON;
// etc.

The base2 library provides a very interesting solution to the problem of importing
namespaces into the current context. Because there’s no way to automate this problem,
we can make use of runtime evaluation to make the preceding easier to implement.

 Whenever a new class or module is added to a base2 package, a string of execut-
able code is constructed that can be evaluated to introduce the functions into the
current context, as shown in the following listing (which assumes that base2 has
been loaded).
Licensed to Maxeta Technologies <account@maxetatech.com>

https://github.com/douglascrockford/JSON-js
http://www.manning.com/mikowski/
http://www.manning.com/mikowski/
http://manning.com/vinegar/
http://manning.com/vinegar/

206 CHAPTER 9 Ninja alchemy: runtime code evaluation

Evalu
the
impor
<script type="text/javascript">

 base2.namespace ==
 "var Base=base2.Base;var Package=base2.Package;" +
 "var Abstract=base2.Abstract;var Module=base2.Module;" +
 "var Enumerable=base2.Enumerable;var Map=base2.Map;" +
 "var Collection=base2.Collection;var RegGrp=base2.RegGrp;" +
 "var Undefined=base2.Undefined;var Null=base2.Null;" +
 "var This=base2.This;var True=base2.True;var False=base2.False;" +
 "var assignID=base2.assignID;var detect=base2.detect;" +
 "var global=base2.global;var lang=base2.lang;" +
 "var JavaScript=base2.JavaScript;var JST=base2.JST;" +
 "var JSON=base2.JSON;var IO=base2.IO;var MiniWeb=base2.MiniWeb;" +
 "var DOM=base2.DOM;var JSB=base2.JSB;var code=base2.code;" +
 "var doc=base2.doc;";

 assert(typeof This === "undefined",
 "The This object doesn't exist.");

 eval(base2.namespace);

 assert(typeof This === "function",
 "And now the namespace is imported.");
 assert(typeof Collection === "function",
 "Verifying the namespace import.");

</script>

This is a very ingenious way of tackling a complex problem. It may not be done in the
most graceful manner, but until future versions of JavaScript exist that support this,
we’ll have to make do with what we have.

 And speaking of ingenious, another use of evaluation is the packing of JavaScript
code. Let’s learn about that.

9.3.3 JavaScript compression and obfuscation

One of the realities of client-side code is that it needs to somehow actually get to the
client side. As such, keeping the transmission footprint as small as possible is a worthy
goal. We could try to write our code in as few characters as possible, but that leads to
crappy and unreadable code. Rather, it’s best to write our code with as much clarity as
possible, and then to compress it for transmission.

 A popular piece of JavaScript software that helps with the second part is Dean
Edwards’s Packer. This clever script compresses JavaScript code, providing a
JavaScript file that’s significantly smaller than the original, while still being capable of
executing and self-extracting itself to run again. Dean Edwards’s Packer can be found
at http://dean.edwards.name/packer/.

 The result of using this tool is an encoded string that’s converted into a string of
JavaScript code and executed using the eval() function. The result typically looks
something like this:

Listing 9.7 Examining how base2 namespace importing works

Defines the names to
be imported

Tests the “before” condition, making
sure that one of the names we’ll be
defining doesn’t exist yet

ates

tees
Tests the “after”

conditions spot checking
that names have been imported
Licensed to Maxeta Technologies <account@maxetatech.com>

http://dean.edwards.name/packer/

207Code evaluation in action
eval(function(p,a,c,k,e,r){e=function(c){return(c<a?'':e(
 parseInt(c/a)))+((c=c%a)>35?String.fromCharCode(c+29):
 c.toString(36))};if(!''.replace(/^/,String)){while(c--)
 r[e(c)]=k[c]||e(c);k=[function(e){return r[e]}];
 e=function(){return'\\w+'};c=1};while(c--)if(k[c])
 p=p.replace(new RegExp('\\b'+e(c)+'\\b','g'),k[c]);
 return p}(' // ... long string ...

While this technique is clever and quite interesting, it has some fundamental flaws,
the most debilitating being that the overhead of uncompressing the script every time
it loads is quite costly.

 When distributing a piece of JavaScript code, it’s normal to think that the smallest
code (bytewise) will download and load the fastest. But this isn’t always true—smaller
code may download faster, but doesn’t always evaluate faster. And when all is said and
done, it’s the combination of downloading and evaluating that’s important to the per-
formance of your pages. It breaks down to a simple formula:

load time = download time + evaluation time

Let’s take a look at the speed of loading jQuery in three forms:

■ Normal (uncompressed)
■ Minimized, using Yahoo!’s YUI Compressor, which removes whitespace and per-

forms a few other simple tricks
■ Packed using Dean Edwards’s Packer, with massive rewriting and decompres-

sion using eval()

By order of file size, packed is the smallest, then minimized, followed by uncom-
pressed, and we’d rightly expect their download times to be proportional to the file
size. But the packed version has significant overhead: it must be uncompressed and
evaluated on the client side. This unpacking has a tangible cost in load time, and means,
in the end, that using a minimized version of the code is much faster than the packed
version, even though its file size is quite a bit larger.

 The results of the study (more information on which can be found at http://
ejohn.org/blog/library-loading-speed/) are shown in table 9.1.

This isn’t to say that using code from Packer is worthless—far from it. But if your goals
are limited to performance, it may not be your best choice.

Table 9.1 A comparison of load speeds for various formats of the jQuery JavaScript library

Compression scheme Average time (ms) Number of samples

Normal 645.4818 12,589

Minimized 519.7214 12,611

Packed 591.6636 12,606
Licensed to Maxeta Technologies <account@maxetatech.com>

http://ejohn.org/blog/library-loading-speed/
http://ejohn.org/blog/library-loading-speed/

208 CHAPTER 9 Ninja alchemy: runtime code evaluation
 But performance may not always be your number one focus. Even with the addi-
tional overhead, the Packer can be a valuable tool if obfuscation is what you’re after.
Unlike server-side code, which in a reasonably secured web application is completely
inaccessible from the client, JavaScript code must be sent to the client for execution.
After all, the browser can’t execute any code that it doesn’t receive.

 Back when the most complicated scripts on web pages were for trivial activities
such as image rollovers, no one much cared that the code was shipped off to the client
and was available for viewing by anyone on the receiving end. But these days, in the
era of highly functional Ajax pages and so-called single-page applications, the amount
and complexity of code can be high, and some organizations can be leery of exposing
that code to the public.

 The obfuscation provided by scripts such as Packer, while not an undefeatable
solution, may be part of the answer such organizations are looking for.

 If nothing else, Packer serves as a good example of using eval() to effect run-
time evaluation.

TIP If you’re interested in compressors, you can check out the YUI Compres-
sor at http://developer.yahoo.com/yui/compressor/, and Google’s Closure
Compiler at https://developers.google.com/closure/compiler/. Yahoo! also
provides some other interesting performance information at http://developer
.yahoo.com/performance/rules.html.

Let’s move on to another activity that we might use runtime code evaluation for:
rewriting code.

9.3.4 Dynamic code rewriting
Because we have the ability to decompile existing JavaScript functions using a func-
tion’s toString() method, as described in section 9.2, we can create new functions
from existing ones by extracting and massaging the old function’s contents.

 One case where this has been done is in the unit-testing library Screw.Unit (https://
github.com/nkallen/screw-unit).

 Screw.Unit takes existing test functions and dynamically rewrites their contents to
use the functions provided by the library. For example, a typical Screw.Unit test looks
like this:

describe(“Matchers”, function() {
 it("invokes the provided matcher on a call to expect", function() {
 expect(true).to(equal, true);
 expect(true).to_not(equal, false);
 });
});

Note the methods: describe(), it(), and expect(). None of these exist in the global
scope. To make this code possible, Screw.Unit rewrites this code on the fly to wrap all
the functions with multiple with(){} statements (which we’ll talk about in chapter 10),
injecting the function internals with the functions that it needs in order to execute.
Here’s an example:
Licensed to Maxeta Technologies <account@maxetatech.com>

http://developer.yahoo.com/yui/compressor/
https://developers.google.com/closure/compiler/
http://developer.yahoo.com/performance/rules.html
http://developer.yahoo.com/performance/rules.html
https://github.com/nkallen/screw-unit
https://github.com/nkallen/screw-unit

209Code evaluation in action
var contents = fn.toString().match(/^[^{]*{((.*\n*)*)}/m)[1];
var fn = new Function("matchers", "specifications",
 "with (specifications) { with (matchers) { " + contents + " } }"
);

fn.call(this, Screw.Matchers, Screw.Specifications);

This is a case of using code evaluation to provide a simpler user experience for test
writers without having to introduce a bunch of variables into the global scope.

 Next, the term AOP has been bandied about for the past few years in the world of
server-side code. Why should they have all the fun?

9.3.5 Aspect-oriented script tags

AOP, or aspect-oriented programming, is defined by Wikipedia as “a programming
paradigm which aims to increase modularity by allowing the separation of cross-
cutting concerns.” Yeah, that made our heads hurt too.

 Stripped down to its bare bones, AOP is a technique by which code is injected and
executed at runtime to handle “cross-cutting” things like logging, caching, security,
and so on. Rather than weighing down code with a bunch of logging statements, an
AOP engine will add the logging code at runtime, keeping it out of the programmer’s
face during development.

TIP For more information on AOP, see the Wikipedia article at http://
en.wikipedia.org/wiki/Aspect-oriented_programming. And if you’re inter-
ested in using AOP in Java, take a gander at AspectJ in Action by Ramnivas
Laddad (www.manning.com/laddad2/).

The injection and evaluation of code at runtime sounds right up our alley in this
chapter, doesn’t it? Let’s see how we might use the ideas of AOP to our advantage.

NOTE Remember the memoization example of section 5.5? That was actually
a good example of applying AOP in JavaScript. You’ve already done it without
even knowing it!

We’ve previously discussed using script tags that have invalid type attributes as a means
of including new pieces of data in the page that you don’t want the browser to touch.
We can take that concept one step further and use it to enhance existing JavaScript.

 Let’s say that, for whatever reason, we create a new script type called “onload”.
 What? A new script type? How can we do that?
 As it turns out, defining custom script types is easy because the browsers will ignore

any script type that it doesn’t understand. We can force the browser to completely
ignore a script block (and use it for whatever nefarious purposes we want) by using a
type value that’s not standard.

 If we want to create new type called “onload”, we could do so easily by specifying a
script block as follows:

<script type="x/onload"> ... custom script here ... </script>
Licensed to Maxeta Technologies <account@maxetatech.com>

www.manning.com/laddad2/
http://en.wikipedia.org/wiki/Aspect-oriented_programming
http://en.wikipedia.org/wiki/Aspect-oriented_programming

210 CHAPTER 9 Ninja alchemy: runtime code evaluation
Note that we’re following the convention of using “x” to mean “custom.” We’ll intend
such blocks to contain normal JavaScript code that will be executed whenever the
page is loaded, as opposed to being normally executed inline.

 Examine the following code listing.

<script type="text/javascript">
 window.onload = function(){
 var scripts = document.getElementsByTagName("script");
 for (var i = 0; i < scripts.length; i++) {
 if (scripts[i].type == "x/onload") {
 globalEval(scripts[i].innerHTML);
 }
 }
 };
</script>

<script type="x/onload">
 assert(true,"Executed on page load");
</script>

In this example, we provide a custom script block d that’s ignored by the browser. In
the onload handler for the page, we search for all script blocks B, and upon finding
any that are of our custom type, we use the globalEval() function that we developed
earlier in this chapter to cause the script to be evaluated in the global context c.

 This is a simple example, but this technique could be used for more complex and
meaningful purposes. For example, custom script blocks are used with the jQuery
.tmpl() method to provide runtime templates. We could use this to execute scripts on
user interaction, or when the DOM is ready to be manipulated, or even relatively based
upon adjacent elements. The application of this technique is limited only by the imag-
ination of the page author.

 Now let’s see another advanced use of runtime evaluation.

9.3.6 Metalanguages and DSLs

One of the most important examples of the power of runtime code evaluation can
be seen in the implementation of other programming languages on top of the Java-
Script language; metalanguages, if you will, that can be dynamically converted into
JavaScript source and evaluated. Frequently, such custom languages are very specific
to the developer’s business needs, and the term domain-specific language (DSL) has
been coined to name such creations.

 There are two such DSLs that have been especially interesting.

PROCESSING.JS
Processing.js is a port of the Processing visualization language (see http://processing
.org/), which is typically implemented using Java. The port to JavaScript, running on
the HTML 5 Canvas element, was created by John Resig.

Listing 9.8 Creating a script tag type that executes only after the page has loaded

Finds all script
blocks b

Locates and executes
“x/onload” blocks c

Provides custom
script d
Licensed to Maxeta Technologies <account@maxetatech.com>

http://processing.org/
http://processing.org/

211Code evaluation in action
 This port is a full programming language that can be used to manipulate the visual
display of a drawing area. Arguably, Processing.js is particularly well suited to this task,
making it an effective port.

 An example of Processing.js code, utilizing a script block with a type of "application/
processing", follows:

<script type="application/processing">
class SpinSpots extends Spin {
 float dim;
 SpinSpots(float x, float y, float s, float d) {
 super(x, y, s);
 dim = d;
 }
 void display() {
 noStroke();
 pushMatrix();
 translate(x, y);
 angle += speed;
 rotate(angle);
 ellipse(-dim/2, 0, dim, dim);
 ellipse(dim/2, 0, dim, dim);
 popMatrix();
 }
}
</script>

The preceding Processing.js code is converted into JavaScript code and executed
using a call to eval(). This is the resulting JavaScript:

function SpinSpots() {with(this){
 var __self=this;function superMethod(){
 extendClass(__self,arguments,Spin);
 this.dim = 0;
 extendClass(this, Spin);
 addMethod(this, 'display', function() {
 noStroke();
 pushMatrix();
 translate(x, y);
 angle += speed;
 rotate(angle);
 ellipse(-dim/2, 0, dim, dim);
 ellipse(dim/2, 0, dim, dim);
 popMatrix();
 });
 if (arguments.length == 4) {
 var x = arguments[0];
 var y = arguments[1];
 var s = arguments[2];
 var d = arguments[3];
 superMethod(x, y, s);
 dim = d;
 }
}}
Licensed to Maxeta Technologies <account@maxetatech.com>

212 CHAPTER 9 Ninja alchemy: runtime code evaluation
The details of the translation from a metalanguage to JavaScript would require a chap-
ter of its own (or maybe even a whole book) and is beyond the scope of this discus-
sion. So if it blew by you, don’t worry about it too much. It’s pretty esoteric stuff.

 But why use a meta-language at all? By using the Processing.js language, we gain a
few immediate benefits over using JavaScript:

■ We get the benefits of Processing’s advanced language features (such as classes
and inheritance)

■ We get Processing’s simple but powerful drawing API
■ We get all of the existing documentation and demos on Processing

More information can be found at http://ejohn.org/blog/processingjs/.
 The important point to take away from this is that all of this advanced processing is

made possible through the code-evaluation capabilities of the JavaScript language.
 Let’s look at another such project.

OBJECTIVE-J
A second major project using these capabilities is Objective-J, a port of the Objective-C
programming language to JavaScript by the company 280 North. Objective-J was used
for the product 280 Slides (an online slideshow builder).

 The 280 North team had extensive experience developing applications for OS X,
which are primarily written in Objective-C, so in order to create a more productive
environment to work within, they ported the Objective-C language to JavaScript. In
addition to providing a thin layer over the JavaScript language, Objective-J allows
JavaScript code to be mixed in with the Objective-C code. An example is shown here:

// DocumentController.j
// Editor
//
// Created by Francisco Tolmasky.
// Copyright 2005 - 2008, 280 North, Inc. All rights reserved.

import <AppKit/CPDocumentController.j>
import "OpenPanel.j"
import "Themes.j"
import "ThemePanel.j"
import "WelcomePanel.j"

@implementation DocumentController : CPDocumentController
{
 BOOL _applicationHasFinishedLaunching;
}

- (void)applicationDidFinishLaunching:(CPNotification)aNotification
{
 [CPApp runModalForWindow:[[WelcomePanel alloc] init]];
 _applicationHasFinishedLaunching = YES;
}

- (void)newDocument:(id)aSender
{
 if (!_applicationHasFinishedLaunching)
 return [super newDocument:aSender];
Licensed to Maxeta Technologies <account@maxetatech.com>

http://ejohn.org/blog/processingjs/

213Summary
 [[ThemePanel sharedThemePanel]
 beginWithInitialSelectedSlideMaster:SaganThemeSlideMaster
 modalDelegate:self
 didEndSelector:@selector(themePanel:didEndWithReturnCode:)
 contextInfo:YES];
}

- (void)themePanel:(ThemePanel)aThemePanel
 didEndWithReturnCode:(unsigned)aReturnCode
{
 if (aReturnCode == CPCancelButton)
 return;

 var documents = [self documents],
 count = [documents count];

 while (count--)
 [self removeDocument:documents[0]];

 [super newDocument:self];
}

In the Objective-J parsing application, which is written in JavaScript and converts the
Objective-J code on the fly at runtime, they use light expressions to match and handle
the Objective-C syntax without disrupting the existing JavaScript. The result is a string
of JavaScript code that’s evaluated using runtime evaluation.

 While this implementation has less far-reaching benefits (it’s a specific hybrid lan-
guage that can only be used within this context), its potential benefits to users who are
already familiar with Objective-C, but who wish to explore web programming, will be
self-evident.

9.4 Summary
In this chapter we’ve learned the fundamentals of runtime code evaluation in JavaScript.

■ There are a number of mechanisms that JavaScript provides for evaluating
strings of JavaScript code at runtime:
– The eval() method
– Function constructors
– Timers
– Dynamic <script> blocks

■ JavaScript also provides a means to go in the opposite direction—obtaining a
string for the code of a function via a function’s toString() method. This pro-
cess is known as function decompilation.

■ We also explored a variety of use cases for runtime evaluation, including such
activities as:
– JSON conversion
– moving definitions between namespaces
– minimization and obfuscation of JavaScript code
Licensed to Maxeta Technologies <account@maxetatech.com>

214 CHAPTER 9 Ninja alchemy: runtime code evaluation
– dynamic code rewriting and injection
– and even creating metalanguages

While the potential for misuse of this powerful feature is possible, the incredible
power that comes with harnessing code evaluation makes it an excellent tool to wield
in our quest for JavaScript ninja-hood.
Licensed to Maxeta Technologies <account@maxetatech.com>

With statements
The with statement is a powerful, frequently misunderstood, and controversial fea-
ture of JavaScript. A with statement allows us to put all the properties of an object
within the current scope, allowing us to reference and assign to them without hav-
ing to prefix them with a reference to their owning object.

 It’s important to know that this statement’s continued existence within
JavaScript is fleeting. The ECMAScript 5 specification prohibits its use in strict
mode, to the extent of considering it a syntax error.

 Moreover, the with statement, even prior to ECMAScript 5, was not without its
detractors. One of these high-profile skeptics is none less than Douglas Crockford
(JavaScript Ninja Extraordinaire, inventor of JSON, and author of JavaScript: The
Good Parts), who, in 2006, published a famous blog post titled “with Statement Con-
sidered Harmful,” in which he states:

This chapter covers
■ Why the with statement is controversial
■ How with statements work
■ Code simplification with with
■ Tricky with gotchas
■ Templating with with
215

Licensed to Maxeta Technologies <account@maxetatech.com>

216 CHAPTER 10 With statements
If you can’t read a program and be confident that you know what it is
going to do, you can’t have confidence that it is going to work correctly.
For this reason, the with statement should be avoided.

Douglas Crockford, April 2006 (http://yuiblog.com/blog/
2006/04/11/with-statement-considered-harmful/)

Mr. Crockford was not alone. Many JavaScript editors and IDEs (integrated develop-
ment environments) have flagged uses of with with warnings, advising against their
use. So why are we even talking about it?

 Well, there’s a lot of existing code that utilizes with, and you’re likely to run up
against the with statement in code that’s out in the wild, so it’s something you should
be familiar with even if you shouldn’t plan to use it in new code.

 With that said (pun absolutely intended), let’s learn about the with statement.

10.1 What’s with “with”?
A with statement creates a scope within which the properties of a specified object can
be referenced without a prefix.

 As we’ll explore in this chapter, there are a number of use cases in which this
might be handy:

■ Shortening references to an object in a deep hierarchy
■ Simplifying test code
■ Exposing properties as top-level references to a template
■ And more

But first, let’s see how it all works.

10.1.1 Referencing properties within a with scope

To start off, let’s jump right into looking at the basics of how the with statement works,
as shown in the following listing.

<script type="text/javascript">

 var use = "other";

 var katana = {
 isSharp: true,
 use: function(){
 this.isSharp = !this.isSharp;
 }
 };

 with (katana) {

 assert(use !== "other" && typeof use == "function",
 "use is a function from the katana object.");
 assert(this !== katana,
 "context isn't changed; keeps its original value");

Listing 10.1 Creating a with scope using an object

Defines a top-level
variable

 b

Creates an object c

Establishes a
with scope d

Tests inside
scope e
Licensed to Maxeta Technologies <account@maxetatech.com>

http://yuiblog.com/blog/ 2006/04/11/with-statement-considered-harmful/
http://yuiblog.com/blog/ 2006/04/11/with-statement-considered-harmful/

217What’s with “with”?
 }

 assert(use === "other",
 "outside the with use is unaffected.");
 assert(typeof isSharp === "undefined",
 "outside the with the properties don't exist.");

</script>

In the preceding code, we can see how the properties of the katana object are intro-
duced into the scope created by the with statement. Within the scope, we can refer-
ence the properties directly without the katana prefix as if they were top-level variables
and methods.

 To verify this, we start by defining a top-level variable with the name use B. Then
we create an inline object that has a property with that same name, use, along with
another named isSharp c. This object is referenced by a variable named katana.

 Things get interesting when we establish a with scope using katana d. Within this
scope, the properties of katana can be referenced directly without the katana prefix.
We test this e by verifying that a reference to use doesn’t have the value of the top-
level variable named use, and that it’s a function, as we’d expect if the reference to use
pointed to the katana.use() method.

 Figure 10.1 shows that the assertions pass.
 Our testing continues outside the scope of the with statement f, verifying that

references to use refer to the top-level variable, and that the isSharp property is no
longer available.

 Note that within the scope of the with statement, the object’s properties take abso-
lute precedence over variables of the same name defined in higher-level scopes. This
is one of the primary reasons that with is derided; code within a with scope can be
ambiguous as to its meaning.

 We have also proven that the function context (this) is unaffected by the statement.
 OK, that covers reading the values of properties. What about writing to them?

Tests outside
scope f

Figure 10.1 With a with
statement, we can cause
simple references to
resolve to an object’s
properties
Licensed to Maxeta Technologies <account@maxetatech.com>

218 CHAPTER 10 With statements
10.1.2 Assignments within a with scope

Let’s take a look at assignments within a with scope, as shown in the next listing.

<script type="text/javascript">

 var katana = {
 isSharp: true,
 use: function(){
 this.isSharp = !this.isSharp;
 }
 };

 with (katana) {
 isSharp = false;

 assert(katana.isSharp === false,
 "properties can be assigned");

 cut = function(){
 isSharp = false;
 };

 assert(typeof katana.cut == "function",
 "new properties can be created on the scoped object");
 assert(typeof window.cut == "function",
 "new properties are created in the global scope");

 }

</script>

In this code, we create the same katana object as in our previous test, with use and
isSharp properties B, and we once again create a with scope using that object. But
instead of referencing the properties, we’re going to try some assignments.

 First, we assign a value of false to the isSharp property c. If isSharp resolves to the
katana property, we’d expect that the value of the property would be flipped from its
initial value of true to false. We explicitly test the property d and, peeking ahead to
figure 10.2, we see that this test passes. This proves that we can use unprefixed refer-
ences to the object’s properties for both reading and for assignments.

 Then we try something a little less straightforward: we create a function and assign
it to a new reference named cut e. The question is, within which scope will this new
property be created? Will it be created on katana because the assignment is within the
with scope? Or will it be created in the global scope (the window object) as we’d expect
outside of any with scope?

 To find out which of these situations transpires, we write two tests f, only one of
which can succeed. The first test asserts that the property will be created within katana,
and the second test asserts that the property will be created in the global scope.

 Figure 10.2 clearly shows that, because the second test is the one that passes, unref-
erenced assignments that are not to an existing property on the with scope’s object are
made to the global context.

Listing 10.2 Assignments in with scopes

Creates an object b

Assigns to an existing
property c

Tests the
assignment

 d

Attempts to create
a new property e

Tests the
assignment f
Licensed to Maxeta Technologies <account@maxetatech.com>

219What’s with “with”?
If we wanted to create the new property on katana, we’d need to use the object refer-
ence prefix, even though we are within a with scope, as follows:

katana.cut = function(){
 isSharp = false;
};

OK, that’s easy enough; that’s what we’d need to do without a with scope in any case,
but it rather defeats the purpose of with scopes in the first place. Nevertheless, this
does point out that care needs to be taken within with scopes, because a simple typo in
a property name can lead to strange and unexpected results; namely that a new global
variable will be introduced rather than modifying the intended existing property on
the with scope’s object. Of course, this is something we need to generally be aware of,
so we’ll need to carefully test our code, as always.

 What other considerations should we be aware of?

10.1.3 Performance considerations

There’s another major factor that we must be aware of when using with: it slows down
the execution performance of any JavaScript that it encompasses. And that’s not just
limited to objects that it interacts with. Let’s look at a timing test in the next listing.

<script type="text/javascript">

 var ninja = { foo: "bar" },
 value,
 maxCount = 1000000,
 n,
 start,
 elapsed;

 start = new Date().getTime();
 for (n = 0; n < maxCount; n++) {
 value = ninja.foo;
 }
 elapsed = new Date().getTime() - start;
 assert(true,"Without with: " + elapsed);

Listing 10.3 Performance testing the with statement

Figure 10.2 Test results
show that unprefixed
references can’t be used
to create new properties.

Sets up some
variables b

Tests without
with c
Licensed to Maxeta Technologies <account@maxetatech.com>

220 CHAPTER 10 With statements
 start = new Date().getTime();
 with(ninja){
 for (n = 0; n < maxCount; n++) {
 value = foo;
 }
 }
 elapsed = new Date().getTime() - start;
 assert(true,"With (with access): " + elapsed);

 start = new Date().getTime();
 with(ninja){
 for (n = 0; n < maxCount; n++) {
 foo = n;
 }
 }
 elapsed = new Date().getTime() - start;
 assert(true,"With (with assignment): " + elapsed);

 start = new Date().getTime();
 with(ninja){
 for (n = 0; n < maxCount; n++) {
 value = "no test";
 }
 }
 elapsed = new Date().getTime() - start;
 assert(true,"With (without access): " + elapsed);

</script>

For these performance tests, we set up a number of variables, including one (ninja)
that will be the target of the with scope B. Then we run four performance tests, each
performing an action a million times and displaying its results:

■ The first test assigns the value of the ninja.foo property to the variable value
without declaring any with scope c.

■ The second test performs the same assignment as the first test, except that the
assignment takes place within a with scope and doesn’t prefix the reference to
property foo d.

■ The third test assigns a value (the loop counter) to the foo property within a
with scope, and without prefixing the property reference e.

■ The final test performs an assignment to the variable value within a with scope,
but without any access to the ninja object at all f.

The results of running these tests are shown in table 10.1. All tests were run on the
listed browsers executing on a MacBook Pro running OS X Lion 10.7.3 with a 2.8 GHz
Core i7 processor and 8 GB of RAM. The IE test was executed on a Windows 7 instance
running in a Parallels virtual machine. All times are in milliseconds.

 The results are dramatic and could be rather surprising. Not only are there wildly
varying times across the browsers (it’s clear who’s been focusing on JavaScript perfor-
mance), but across the tests.

 Regardless of which browser the tests were executed within, the code executed
within with scopes was dramatically slower. This might not be too surprising for the

Tests
referencing d

Tests
assignments e

Tests with
no access f
Licensed to Maxeta Technologies <account@maxetatech.com>

221Real-world examples
tests in which the with scope’s object was referenced or assigned, but look at the times
in the rightmost column whose test performed no access to the object at all. The mere
fact that the code was inside a with scope dramatically slowed it down, by as much as a
factor of 41, even though there was no access to the scoped object at all!

 We must be sure that we are comfortable with this level of extra overhead when we
decide that we want to enjoy any convenience that the with statement brings to the
party. And, obviously, the with statement is completely out of the picture for code in
which performance is a major consideration.

10.2 Real-world examples
Inarguably, the most common reason for using with is the convenience of not having
to duplicate variable references for property access. JavaScript libraries frequently use
this as a means of simplifying statements that would otherwise be visually complex.

 Here are a few examples from a couple of the major libraries, starting with one
from Prototype:

Object.extend(String.prototype.escapeHTML, {
 div: document.createElement('div'),
 text: document.createTextNode('')
});

with (String.prototype.escapeHTML) div.appendChild(text);

Here, Prototype uses with to avoid having to prefix references to the div and text proper-
ties of String.prototype.escapeHTML, which we must admit is a mouthful of a prefix.

 But is with really necessary for this purpose? Can you think of something that we’ve
already discussed that could achieve the same goal, without resorting to a with scope?
Consider the following:

(function(s){
 s.div.appendChild(s.text);
})(String.prototype.escapeHTML);

It’s our old friend, the immediate function!
 Within the scope of the immediate function, the long reference String.prototype

.escapeHTML can be referenced as simply s via the parameter of the function. Although

Table 10.1 Results of running the performance tests of listing 10.3, in milliseconds

Browser
Without with

scope
with scope and

reference
with scope and

assignment
with scope but

no access

Chrome 21 87 1456 1395 1282

Safari 5.1 6 264 308 279

Firefox 14 256 717 825 648

Opera 11 13 677 679 623

IE 9 13 173 157 139
Licensed to Maxeta Technologies <account@maxetatech.com>

222 CHAPTER 10 With statements
this isn’t exactly the same as a with scope—the prefix is not eliminated, it’s replaced
with a shorter reference—many ninja developers would assert that aliasing a complex
reference to a simpler one is far superior to the passive-aggressive complete elimina-
tion of the prefix. And because with is on the endangered species list, using immedi-
ate functions gives us a way to alias complex references with language constructs that
are well understood and will continue to be supported.

 Here’s another with example from the base2 JavaScript library:

with (document.body.style) {
 backgroundRepeat = "no-repeat";
 backgroundImage =
 "url(http://ie7-js.googlecode.com/svn/trunk/lib/blank.gif)";
 backgroundAttachment = "fixed";
}

In this snippet, base2 uses with as a simple means of not having to repeat a lengthy
prefix, in this case document.body.style, again and again. This allows for some super-
simple modification of a DOM element’s style object.

 Another example from base2 follows:

var Rect = Base.extend({
 constructor: function(left, top, width, height) {
 this.left = left;
 this.top = top;
 this.width = width;
 this.height = height;
 this.right = left + width;
 this.bottom = top + height;
 },

 contains: function(x, y) {
 with (this)
 return x >= left && x <= right && y >= top && y <= bottom;
 },

 toString: function() {
 with (this) return [left, top, width, height].join(",");
 }
});

This second example from base2 uses with as a means of simply accessing instance
properties. Normally this code would be much longer, but the terseness that with is
able to provide adds some much-needed clarity.

 The final example is from the Firebug developer extension for Firefox:

const evalScriptPre = "with(__scope__.vars){ with(__scope__.api){" +
 " with(__scope__.userVars){ with(window){";
const evalScriptPost = "}}}}";

These lines from Firebug are especially complex—quite possibly the most complex
uses of with in a publicly accessible piece of code. These statements are being used
within the debugger portion of the extension, allowing the user to access local variables,
the firebug API, and the global object, all within the JavaScript console. Operations like
Licensed to Maxeta Technologies <account@maxetatech.com>

223Testing
this are generally outside the scope of most applications, but it helps to show the
power of with and how it can simplify complex pieces of code.

 One especially interesting takeaway from the Firebug example is the dual use of
with, bringing precedence to the window object over other objects.

 Back in listing 10.1, we saw that normally when there is a name collision, the object
of the with scope takes precedence over the global values. Structuring code as follows,

with (x) { with (window) { ... } }

allows us to have the x object’s properties be introduced by with, while still allowing
global variables to take precedence in the event of a name collision.

 Now let’s see another use to which the with statement has been put.

10.3 Importing namespaced code
As previously shown, one of the most common uses for the with statement is to sim-
plify statements that have numerous references to object properties. We can see this
frequently in namespaced code in which objects are defined within objects to provide
an organized structure and naming for the code.

 A side effect of this technique is that it can sometimes become rather tedious to
retype the object namespace names again and again.

 Observe the two statements in the following snippet, which both perform the same
operation using the YUI JavaScript library. The first statement is as we would write it
without the use of with, and the second with with:

YAHOO.util.Event.on(
 [YAHOO.util.Dom.get('item'), YAHOO.util.Dom.get('otheritem')],
 'click', function(){
 YAHOO.util.Dom.setStyle(this,'color','#c00');
 }
);

with (YAHOO.util.Dom) {
 YAHOO.util.Event.on([get('item'), get('otheritem')], 'click',
 function(){ setStyle(this,'color','#c00'); });
}

The addition of the single with statement allows for a considerable increase in code
simplicity.

 Now let’s see if the with statement has anything to say for itself when it comes
to testing.

10.4 Testing
When testing pieces of functionality within a test suite, there are a couple things that
we always have to watch out for. The primary of these is attending to the synchroniza-
tion between the assertion methods and the test case currently being run. Typically
this isn’t much of a problem, but it can become troublesome when we begin dealing
with asynchronous tests.
Licensed to Maxeta Technologies <account@maxetatech.com>

224 CHAPTER 10 With statements
 A common solution to this issue is to create a central tracking object for each test
run. The test runner used by the Prototype and script.aculo.us libraries follows this
model, providing a central object as the context to each test run. The object contains
all the needed assertion methods and easily collects the results back to a central loca-
tion. We can see an example of this in the following snippet:

new Test.Unit.Runner({
 testSliderBasics: function(){with(this){
 var slider = new Control.Slider('handle1', 'track1');
 assertInstanceOf(Control.Slider, slider);
 assertEqual('horizontal', slider.axis);
 assertEqual(false, slider.disabled);
 assertEqual(0, slider.value);
 slider.dispose();
 }},
 // ...
});

Note the use of with(this) in the preceding test run. The instance variable contains all
the assertion methods (assertInstanceOf, assertEqual, and so on). The method calls
could have also been written explicitly as this.assertEqual, but by using with(this) to
introduce the methods that we wish to use, we can get an extra level of simplicity in
our code.

 Now let’s look at an advanced use of with that you might not have thought to con-
sider: templating.

10.5 Templating with “with”
The final, and likely most compelling, example of using with that we’ll consider is
within a simplified templating system.

 The customary goals for a templating system usually include the following:

■ There should be a way to run embedded code and to print out data.
■ There should be a means of caching compiled templates.
■ It should (perhaps, most importantly) be simple to access mapped data.

This last point is where with becomes especially useful.
 Before we look at how with is used in the implementation, let’s take a look at a tem-

plate that uses the templating system, as shown in the next listing.

<html>
<head>
 <script type="text/tmpl" id="colors">
 <p>Here's a list of <%= items.length %> items:</p>

 <% for (var i = 0; i < items.length; i++) { %>
 <li style='color:<%= colors[i % colors.length] %>'>
 <%= items[i] %>
 <% } %>

Listing 10.4 A sample template to generate an HTML page
Licensed to Maxeta Technologies <account@maxetatech.com>

225Templating with “with”

 and here's another...
 </script>
 <script type="text/tmpl" id="colors2">
 <p>Here's a list of <%= items.length %> items:</p>

 <% for (var i = 0; i < items.length; i++) {
 print("<li style='color:", colors[i % colors.length], "'>",
 items[i], "");
 } %>

 </script>
 <script type="text/javascript" src="tmpl.js"></script>
 <script type="text/javascript">
 var colorsArray = ['red', 'green', 'blue', 'orange'];

 var items = [];
 for (var i = 0; i < 10000; i++) {
 items.push("test");
 }

 function replaceContent(name) {
 document.getElementById('content').innerHTML =
 tmpl(name, {colors: colorsArray, items: items});
 }
 </script>
</head>
<body>
 <input type="button" value="Run Colors"
 onclick="replaceContent('colors')">
 <input type="button" value="Run Colors2"
 onclick="replaceContent('colors2')">
 <p id="content">Replaced Content will go here</p>
</body>
</html>

Within this template, the special delimiters are used to differentiate embedded
JavaScript code (<% and %>) and expressions to be evaluated (<%= and %>). The Java-
savvy may recognize that these delimiters match those of old-style JSP 1 templating
delimiters (JSP 2 replaced these with a more modern version in 2002).

 Now let’s look at the implementation in the next listing.

(function(){
 var cache = {};

 this.tmpl = function tmpl(str, data){

 var fn = !/\W/.test(str) ?
 cache[str] = cache[str] ||
 tmpl(document.getElementById(str).innerHTML) :

 new Function("obj",
 "var p=[],print=function(){p.push.apply(p,arguments);};" +

Listing 10.5 A templating solution using with

Figures out if we’re getting a template or
if we need to load the template and be

sure to cache the result

Generates a reusable function
that will serve as the template

generator (and which
will be cached)
Licensed to Maxeta Technologies <account@maxetatech.com>

226 CHAPTER 10 With statements
 "with(obj){p.push('" +

 str
 .replace(/[\r\t\n]/g, " ")
 .split("<%").join("\t")
 .replace(/((^|%>)[^\t]*)'/g, "$1\r")
 .replace(/\t=(.*?)%>/g, "',$1,'")
 .split("\t").join("');")
 .split("%>").join("p.push('")
 .split("\r").join("\\'")
 + "');}return p.join('');");

 return data ? fn(data) : fn;
 };
})();

assert(tmpl("Hello, <%= name %>!", {name: "world"}) ==
 "Hello, world!", "Do simple variable inclusion.");

var hello = tmpl("Hello, <%= name %>!");
assert(hello({name: "world"}) == "Hello, world!",
 "Use a pre-compiled template.");

We aren’t going to dig deeply into the implementation details of the templating system;
even though it doesn’t use any concepts that we haven’t already covered, it’s put
together in a rather sophisticated manner, and you shouldn’t feel bad if you don’t com-
pletely grok it at this point. The important point is how a with scope is used B to pro-
vide the properties of the passed data object to the template. This allows the properties
of the data object to be referenced within the template as if they were top-level variables.

 While complex, this templating system provides a quick-and-dirty solution to sim-
ple variable substitution. By giving the user the ability to pass in an object (containing
the names and values of template variables that they want to populate) in conjunction
with an easy means of accessing the variables, the result is a simple and reusable sys-
tem. This is made possible largely due to the existence of the with statement, which
allows the properties to be easily referenced within the templates.

 The templating system works by converting the provided template strings into an
array of values, eventually concatenating them together. The individual statements,
like <%=name%>, are then translated into the more palatable name, folding them inline
into the array construction process. The result is a template construction system that
is blindingly fast and efficient.

 Additionally, all of these templates are generated dynamically (out of necessity,
because inline code is allowed to be executed). In order to facilitate reuse of the
generated templates, we can place all of the constructed template code inside a new
Function(...), which will give us a template function that we can actively plug our
data into.

 The full templating system is pulled together with the use of embedded templates.
There’s a great loophole that we’ve exploited already, provided by modern browsers and
search engines: <script> elements that specify a type that they don’t understand are com-
pletely ignored. This means that we can specify scripts that contain our templates, give

Introduces data as
local variables using a
with scope

 b

Converts
the template

into pure JavaScript

Provides basic
currying to user
Licensed to Maxeta Technologies <account@maxetatech.com>

227Summary
them a type of "text/tmpl", along with a unique ID, and use our system to extract the
templates later on.

 The total result is a templating system that’s easy to use, in large part, because of
the abilities of the with statement.

10.6 Summary
Here’s what we learned in this chapter:

■ The most glaringly obvious point is that the primary goal of the with statement
is to simplify complex code by allowing properties of an object to be referenced
without the need for a reference to the object holding the properties. This can
make code that contains many references to the object’s properties a lot terser
and more easily understandable.

■ We saw how this simplification could be applied to areas such as namespacing,
testing, and even building templating systems, and we looked at some examples
of how with is used by some of the popular JavaScript libraries.

■ As with all powerful tools, discretion should be exercised when using with; it’s
just as easy to obfuscate code using this feature as it is to clarify it.

■ The with statement, controversial throughout its lifetime, has no future, and its
use in new code should be avoided.

During the course of this chapter, we didn’t run across any browser incompatibilities
with respect to using with scopes, but we certainly ran into our share in the chapters
leading up to this one. In the next chapter, we’re going to discuss ways for coping with
cross-browser madness while retaining our own sanity.
Licensed to Maxeta Technologies <account@maxetatech.com>

Licensed to Maxeta Technologies <account@maxetatech.com>

Developing
cross-browser strategies
Anyone who’s been developing on-page JavaScript code for more than five minutes
knows that there’s a wide range of pain points when it comes to making sure that
the code works flawlessly across a set of supported browsers. These considerations
span everything from the basic development for immediate needs, to planning for
future browser releases, all the way to reusing code on web pages that have yet to
be created.

 Coding for multiple browsers is certainly a nontrivial task, and one that must be
balanced according to the development methodologies that you have in place, as
well as the resources available to your project. As much as we’d love for our pages
to work perfectly in every browser that ever existed or will ever exist, reality rears its
ugly head and we must realize that we have finite development resources. We must
plan to apply those resources appropriately and carefully, getting the biggest bang
for our buck from them.

This chapter covers
■ Strategies for developing reusable, cross-

browser JavaScript code
■ Analyzing the issues needing to be tackled
■ Tackling those issues in a smart way
229

Licensed to Maxeta Technologies <account@maxetatech.com>

230 CHAPTER 11 Developing cross-browser strategies
 This starts with choosing our supported browsers carefully.

11.1 Choosing which browsers to support
The primary concern when deciding where to direct our limited resources is deciding
which browsers we’ll primarily support with our code.

 As with virtually any aspect of web development, we need to carefully choose the
browsers upon which we want our users to have an optimal experience. When we
choose to support a browser, we’re typically making the following promises:

■ We’ll actively test against that browser with our test suite.
■ We’ll fix bugs and regressions associated with that browser.
■ The browser will execute our code with a reasonable level of performance.

As an example, most JavaScript libraries end up supporting about a dozen or so brows-
ers. This set is usually the previous release, the current release, and the upcoming beta
release (if available) of the Big Five browsers:

■ Internet Explorer
■ Firefox
■ Safari
■ Chrome
■ Opera

That’s an enormous browser set to support, especially when you consider that these
browsers need to be tested on multiple platforms, and that for browsers such as Inter-
net Explorer, there are many versions in simultaneous use. The mainstream JavaScript
libraries (such as jQuery) have the luxury of a large staff (even if most are volunteers)
that the average page author doesn’t have at his or her disposal. So realistic choices
must be made regarding which browsers to support.

NOTE We can choose to leverage the work already done by the mainstream
JavaScript libraries and automatically gain browser support, but this book
doesn’t make the assumption that you’ll be using a library and aims to help
you choose which browsers to support in your own code.

To decide upon a browser set to support, you might want to make a browser support
matrix, as shown in table 11.1, and fill it in for your own purposes. (The selections in
this table are just an example and don’t reflect any judgment values on the selected
browsers.) The remainder of this chapter should help you decide which boxes to
check and which to “x out.”

 Note that you may need to further differentiate the browsers based upon plat-
form if you don’t plan to support the browsers equally across the platforms on which
they exist.
Licensed to Maxeta Technologies <account@maxetatech.com>

231The five major development concerns
Any piece of reusable JavaScript code, whether it’s a mass-consumption JavaScript
library or our own on-page code, should be developed to work in as many environ-
ments as feasible, concentrating on the browsers and platforms that are important to
the end user. For mass-consumption libraries, that’s a large set; for more targeted
applications, perhaps the required set may be narrower.

 But it’s vitally important not to bite off more than can be chewed, and quality
should never be sacrificed for coverage. That’s important enough to repeat; in fact, we
urge you to read it out loud:

Quality should never be sacrificed for coverage.

In this chapter, we’re going to examine the different situations that JavaScript code
will find itself up against with regards to cross-browser support, and then we’ll exam-
ine some of the best ways to write that code with the aim of alleviating any potential
problems that those situations pose.

 This should go a long way in helping you decide which of these techniques it’s worth
your time to adopt, and it should help you fill out your own browser-support chart.

11.2 The five major development concerns
With any piece of nontrivial code, there are myriad development concerns to worry
about. But five major points pose the biggest challenges to our reusable JavaScript
code, as illustrated in figure 11.1.

Table 11.1 An example “browser support” chart—fill one in with your own decisions

Chrome Firefox Safari IE Opera

Previous ✔ ✔ ✔ ✔ ✔

Current ✔ ✔ ✔ ✔ ✔

Beta ✔ ✔ ✗ ✗ ✗

Figure 11.1 The five major points of concern
for the development of reusable JavaScript

JavaScript

code

Regressions

External code
Browser bugs

Bug fixes

Missing features
Licensed to Maxeta Technologies <account@maxetatech.com>

232 CHAPTER 11 Developing cross-browser strategies
These are the five points:

■ Browser bugs
■ Browser bug fixes
■ Missing features in the browsers
■ External code
■ Browser regressions

We’ll want to balance how much time we spend on each point against how much ben-
efit we get as an end result. For example, is an extra 40 hours of development time
worth better support for an antiquated (and unsupported) browser such as IE 6?

 Ultimately, these are questions that you’ll have to answer yourself, applying them
to your own situation. The answer to the previous question could be radically different
for web applications destined for general internet access, versus an in-house applica-
tion used by workers chained to IE 6 by a Luddite IT department!

 An analysis of our intended audience, our development resources, and schedule
are all factors that go into our decisions. There’s one axiom that can be used when
pondering these points:

■ Remember the past
■ Consider the future
■ Test the present

When striving to develop reusable JavaScript code, we must take all of the points into
consideration but pay closest attention to the most popular browsers that exist right
now. Then we have to take into consideration the changes that are coming in the next
versions of the browsers. And then we must try to maintain compatibility with older
browser versions, supporting as many features as we can without sacrificing quality or
features for the entire support set.

 In the following sections, we’ll break down these various concerns to get a better
understanding of the challenges we’re up against, and how to combat them.

11.2.1 Browser bugs and differences

A primary concern that we’ll need to deal with when developing reusable JavaScript
code is the handling of the various browser bugs and API differences associated with
the set of browsers we’ve decided to support. Any features that we provide in our code
should be completely and verifiably correct in all of those browsers.

 The way we achieve this is quite straightforward, having already been presented in
chapter 2 and used throughout this book: we need a comprehensive suite of tests to
cover both the common and fringe use cases of the code. With good test coverage, we
can feel safe in knowing that the code we develop will work in the supported set of
browsers. And assuming there are no subsequent browser changes that break back-
ward compatibility, we’ll have a warm fuzzy feeling that our code will even work in
future versions of those browsers.
Licensed to Maxeta Technologies <account@maxetatech.com>

233The five major development concerns
 We’ll be looking at specific strategies for dealing with browser bugs and differences
in section 11.3.

 A tricky point in all of this is implementing fixes for current browser bugs in such a
way that they’re resistant to any fixes for those bugs that are implemented in future
versions of the browser.

11.2.2 Browser bug fixes

Assuming that a browser will forever present a particular bug is rather foolhardy—
most browser bugs eventually get fixed, and counting upon the presence of the bug is a
dangerous development strategy. It’s best to use the techniques that we’ll discuss in
section 11.3 to make sure that any bug workarounds are future-proofed as much
as possible.

 When writing a piece of reusable JavaScript code, we want to make sure that it’s
able to last for a good long time. As with writing any aspect of a website (CSS, HTML,
and so on), we don’t want to have to go back and fix code that’s broken by a new
browser release.

 Making assumptions about browser bugs causes a common form of web site breakage:
specific hacks put in place to work around bugs presented by a browser that break when
the browser fixes the bugs in future releases. The issue can be circumvented by building
pieces of feature simulation code (which we’ll discuss at length in section 11.3.3) instead
of making assumptions about the browser.

 The problem with handling browser bugs is twofold:

■ Our code is liable to break when the bug fix is eventually instituted.
■ We could end up training browser vendors to not fix bugs for fear of causing

websites to break.

An interesting example of the second situation occurred during the development of
Firefox 3. A change was introduced that forced DOM nodes created within one docu-
ment to be adopted by another DOM document if they were going to be injected into
the other document (which is in accordance with the DOM specification).

 The following bit of code shouldn’t work:

var node = documentA.createElement("div");
documentB.documentElement.appendChild(node);

This is the proper way of doing it:

var node = documentA.createElement("div");
documentB.adoptNode(node);
documentB.documentElement.appendChild(node);

But because there was a bug in Firefox that allowed the first code snippet to work when it
shouldn’t have, users wrote their code in a manner that depended upon that code work-
ing. This forced Mozilla to roll back their change, for fear of breaking a number of web-
sites. Mozilla acknowledges this issue in their “WRONG DOCUMENT ERR note”: https://
developer.mozilla.org/en-US/docs/DOM/WRONG_DOCUMENT_ERR_note.
Licensed to Maxeta Technologies <account@maxetatech.com>

https://developer.mozilla.org/en-US/docs/DOM/WRONG_DOCUMENT_ERR_note
https://developer.mozilla.org/en-US/docs/DOM/WRONG_DOCUMENT_ERR_note

234 CHAPTER 11 Developing cross-browser strategies
 This brings up another important point concerning bugs: when determining if a
piece of functionality is potentially a bug, always verify it with the specification. In the
preceding case, Internet Explorer was more forceful (throwing an exception if
the node wasn’t in the correct document—the correct behavior), but users assumed
that it was an error with Internet Explorer and wrote conditional code to provide a
fallback. This caused a situation in which users were following the specification for
only a subset of browsers and forcefully rejecting it in others.

 A browser bug is also different from an unspecified API. It’s important to refer
back to browser specifications, because those are the exact standards that the browsers
use in order to develop and improve their code. In contrast, the implementation of an
unspecified API could change at any point (especially if the implementation ever
attempts to become standardized). In the case of inconsistencies in unspecified APIs,
you should always test for your expected output, running additional cases of feature
simulation (see section 11.3.3). Always be aware that future changes could occur in
these APIs as they become solidified.

 Additionally, there’s a distinction between bug fixes and API changes. Whereas bug
fixes are easily foreseen—a browser will eventually fix the bugs in its implementation,
even if it takes a long time—API changes are much harder to spot. Standard APIs are
unlikely to change (though it’s not completely unheard of); changes are much more
likely to occur with unspecified APIs.

 Luckily, this will rarely happen in a way that will massively break most web
applications. But if it does, it’s effectively undetectable in advance (unless, of
course, we test every single API that we ever touch—but the overhead incurred in
such a process would be ludicrous). API changes of this sort should be handled
like any other regression.

 For our next point of concern, we know that no man is an island, and neither is
our code. Let’s explore the ramifications of that.

11.2.3 Living with external code and markup

Any reusable code must coexist with the code that surrounds it. Whether we’re
expecting our code to work within pages that we write ourselves, or on websites devel-
oped by others, we need to ensure that it’s able to cohabit on the page with any other
random code.

 This is a double-edged sword: our code must not only be able to withstand living
with poorly written external code, it must itself take care not to have adverse effects on
the code with which it lives.

 Exactly how much we need to be vigilant about this point of concern depends a
great deal upon the environment in which we expect the code to be used. For exam-
ple, if we’re writing reusable code for a single or limited number of websites that we
have some level of control over, it might be safe to worry less about effects of external
code because we know where the code will operate, and we can, to some degree, fix
any problems ourselves.
Licensed to Maxeta Technologies <account@maxetatech.com>

235The five major development concerns
TIP This is an important enough concern to warrant an entire book on the
subject. We highly recommend the Manning book Third-Party JavaScript by
Ben Vinegar and Anton Kovalyov (http://manning.com/vinegar/) if this is
an area into which you’d like to delve deeply.

If we’re developing code that will have a broad level of applicability in unknown
(and uncontrollable) environments, we’ll need to make doubly sure that our code
is robust.

 Let’s discuss some strategies to achieve that.

ENCAPSULATING OUR CODE

To keep our code from affecting other pieces of code on the pages where it’s loaded,
it’s best to practice encapsulation.

 One dictionary definition of encapsulation reads, “to place in or as if in a capsule”;
a more domain-focused definition could be, “a language mechanism for restricting
access to some of the object’s components.” Your Aunt Mathilda might summarize it
more succinctly as, “keep your nose in your own business!”

 Keeping an incredibly small global footprint when introducing our code into a
page can go a long way to making Aunt Mathilda happy. In fact, keeping our global
footprint to a handful of global variables, or better yet one, is fairly easy.

 The jQuery library is a good example of this. It introduces one global variable (a
function) named jQuery, and one alias for that global variable, $. It even has a sup-
ported means to give the $ alias back to whatever other on-page code or other library
may want to use it.

 Almost all operations in jQuery are made via the jQuery function. And any other
functions that it provides (so-called utility functions) are defined as properties of jQuery
(remember from chapter 3 how easy it is to define functions that are properties of other
functions), thus using the name jQuery as a namespace for all its definitions.

 We can use the same strategy. Let’s say that we’re defining a set of functions for our
own use, or for the use of others, that we’ll group under a namespace of our own
choosing—we’ll pick ninja.

 We could, like jQuery, define a global function named ninja() that performs vari-
ous operations based upon what we pass to the function. For example,

var ninja = function(){ /* implementation code goes here */ }

Defining our own utility functions that use this function as their namespace is easy:

ninja.hitsuke = function(){ /* code to distract guards with fire here */ }

If we didn’t want or need ninja to be a function and to just serve as a namespace, we
could define it as follows:

var ninja = {};

This creates an empty object in which we can define properties and functions in order
to keep from adding these names to the global namespace.
Licensed to Maxeta Technologies <account@maxetatech.com>

http://manning.com/vinegar/

236 CHAPTER 11 Developing cross-browser strategies
 Other practices that we wish to avoid, in order to keep our code encapsulated, are
modifying any existing variables, function prototypes, or even DOM elements. Any
aspect of the page that our code modifies, outside of itself, is a potential area for colli-
sion and confusion.

 The other side of the two-way street is that even if we follow best practices and care-
fully encapsulate our code, we can’t be assured that code that we haven’t written our-
selves is going to be as well behaved.

DEALING WITH LESS-THAN-EXEMPLARY CODE

There’s an old joke that’s been going around since Grace Hopper removed that moth
from a relay back in the Cretaceous period: “The only code that doesn’t suck is the code
you write yourself.” This may seem a rather cynical view, but when our code co-exists
with code over which we have no control, we should assume the worst, just to be safe.

 Other code, even if well-written, rather than just buggy, might intentionally be
doing things like modifying function prototypes, object properties, and DOM element
methods. This practice, well-meant or otherwise, can lay traps for us to step into.

 In such circumstances, our code could be doing something innocuous, such as
using JavaScript arrays, and no one could fault us for making the simple assumption
that JavaScript arrays are going to act like JavaScript arrays. But if some other on-page
code goes and modifies the manner in which arrays work, our code could end up not
working as intended, through absolutely no fault of our own.

 Unfortunately, there aren’t many steadfast rules when dealing when situations of
this nature, but there are some steps we can take to mitigate these types of problems.
The next few sections will introduce these defensive steps.

AVOIDING IMPLANTED PROPERTIES

The first of these defensive steps is to learn how to avoid properties that other code
may have introduced into objects behind our backs.

 In order to detect such activity, we’ll take advantage of the hasOwnProperty() func-
tion. This function is inherited from Object by all JavaScript objects, and it tests
whether the object possesses a specified property. This is similar to JavaScript’s in
operator, with the important difference that it doesn’t check up the prototype chain.

 We can therefore use this function to detect the difference between properties that
have been introduced by an extension to Object.prototype and those placed directly
on the object.

 We can observe the behavior of this function by inspecting tests shown in the fol-
lowing listing.

<script type="text/javascript">

 Object.prototype.ronin = "ronin";

 var object = { ninja: 'value' };
 object.samurai = 'samurai';

Listing 11.1 Using hasOwnProperty() to test for inherited properties

Sets up an inherited
property

Sets up a non-inherited
property
Licensed to Maxeta Technologies <account@maxetatech.com>

237The five major development concerns
 assert(object.hasOwnProperty('ronin'),"ronin is a property");
 assert(object.hasOwnProperty('ninja'),"ninja is a property");
 assert(object.hasOwnProperty('samurai'),"samurai is a property");

</script>

The results of running the tests are shown in figure 11.2.
 The test results clearly show that the ronin property, added to the Object prototype,

isn’t considered an “own property” of the created objects. Thankfully, the number of
scripts that use this technique is very small, but the harm that they cause can be great
if the properties added to the prototype confuse our code.

 This can be especially problematic when iterating through the properties of an
object using a for-in clause. We can counter this complication by using hasOwn-
Property() to determine if we should ignore a property or not:

for (var p in someObject) {
 if (someObject.hasOwnProperty(p)) {
 // do something wonderful
 }
}

This snippet shows how hasOwnProperty() can be used to ignore properties that have
been added to the object’s prototype.

TIP The Object.getOwnPropertyNames() method was introduced in JavaScript
1.8.5. See https://developer.mozilla.org/en-US/docs/JavaScript/Reference/
Global_Objects/Object/getOwnPropertyNames.

COPING WITH GREEDY IDS

Most browsers exhibit an anti-feature (we can’t really call it a bug because the behavior
is absolutely intended) that can cause our code to trip and fall unexpectedly. This fea-
ture causes element references to be added to other elements using the id of the orig-
inal element. And when that id conflicts with properties that are already part of the
element, bad things can happen.

 Take a look at the following HTML snippet to observe what nastiness can ensue as a
result of these so-called “greedy IDs”:

Figure 11.2 Results of tests
show how we can use
hasOwnProperty() to detect
inherited properties
Licensed to Maxeta Technologies <account@maxetatech.com>

https://developer.mozilla.org/en-US/docs/JavaScript/Reference/ Global_Objects/Object/getOwnPropertyNames
https://developer.mozilla.org/en-US/docs/JavaScript/Reference/ Global_Objects/Object/getOwnPropertyNames

238 CHAPTER 11 Developing cross-browser strategies
<form id="form" action="/conceal">
 <input type="text" id="action"/>
 <input type="submit" id="submit"/>
</form>

Now, in the browsers, let’s call this:

var what = document.getElementById('form').action;

Rightly, we’d expect this to be the value of the form’s action attribute. And in most
cases, it would be. But if we inspect the value of variable what, we find that it’s instead a
reference to the input#action element! Huh?

 Let’s try something else:

document.getElementById('form').submit();

This statement should cause the form to be submitted, but instead, we get a
script error:

Uncaught TypeError: Property 'submit' of object #<HTMLFormElement> is not a function

What’s going on?
 What’s happened is that the browsers have added properties to the <form> element

for each of the input elements within the form that reference the element. This would
seem to be handy at first, until we realize that the name of the added property is taken
from the id value of the input elements. And if that id value just happens to be an
already-used property of the form element, such as action or submit, those original
properties are replaced by the new property.

 So, before the input#submit element is created, the reference form.action points to
the value of the action attribute for the <form>. Afterwards, it points to the input#submit
element. The same thing happens to form.submit. Eeesh!

 This choice is somewhat baffling, because for this behavior to occur, the input ele-
ments must have an id, and if they have an id, they’re easy to address without having
to tack properties onto the form.

 In any case, this particular “feature” of the browsers can cause numerous and mys-
tifying problems in our code, and it’ll have to be kept in mind when debugging in
these browsers. When we encounter properties that have seemingly been inexplicably
transformed into something other than what we expect them to be, greedy IDs are a
cause we’ll need to check for.

 Luckily, we can avoid this problem in our own markup by avoiding simple id values
that can conflict with standard property names, and we can encourage others to do
the same. The value submit is especially to be avoided for id and name values, as it’s a
common source of frustrating and perplexing buggy behavior.

ORDER OF STYLESHEETS

Often we expect CSS rules to already be available by the time our code executes. One
of the best ways to ensure that CSS rules provided by stylesheets are defined when our
JavaScript code executes is to include the external stylesheets prior to including the
external script files.
Licensed to Maxeta Technologies <account@maxetatech.com>

239The five major development concerns
 Not doing so can cause unexpected results, because the script attempts to access the
as-yet-undefined style information. Unfortunately, this isn’t an issue that can be easily
rectified with pure JavaScript and should instead be handled with user documentation.

 These last few sections have covered some basic examples of how externalities can
affect how our code works, frequently in unintentional and confounding manners.
Issues with our code will often pop up when other users try to integrate our code into
their sites, at which point we should be able to diagnose the issue and build appropri-
ate tests to handle them. At other times, we’ll discover such problems when we inte-
grate others’ code into our pages, and hopefully the tips in these sections will help to
identify what’s causing the issues.

 It’s unfortunate that there are no better and deterministic solutions to handling
these integration issues other than to take some smart first steps and to write our
code defensively.

 We’ll now move on to the next point of concern.

11.2.4 Missing features

For browsers that aren’t lucky enough to survive our support matrix, and therefore
won’t benefit from the testing we’ll do for the “A List” browsers, there are likely to be
some missing key features that our code needs in order to operate as expected.

 There may even be browsers that lack needed key features but that we do need to
support (perhaps for some political or business reasons).

GRACEFUL DEGRADATION

Even if we aren’t going to give all browsers full support, especially those that didn’t
make the cut, it’ll be best if we write our code defensively so that it degrades grace-
fully, or provides some other type of fallback for end users who choose (or are forced)
to use browsers other than those we have the resources to test upon.

 Our strategy at this point is to deliver the most functionality to our users, and to fail
gracefully when we can’t provide full functionality. This is known as graceful degradation.

 Graceful degradation should be approached cautiously, and with due consider-
ation. Take the case where a browser is capable of initializing and hiding a number of
pieces of navigation on a page, perhaps in hopes of creating a drop-down menu, but
the event-related code to power the menu doesn’t work. The result is a half-functional
page, which helps no one.

 Be sure that any fallback provided by your code offers an alternative that works,
even if with reduced functionality.

BACKWARD COMPATIBILITY

A better strategy would be to design our code to be as backward-compatible as possi-
ble and to actively direct known failing browsers to an alternative version of the page
or a site tailored to the capabilities of the lesser browser. Yahoo! adopts this strategy
with most of their websites, breaking down browsers into graded levels of support.
After a certain amount of time, they “blacklist” a browser (usually when it hits an infin-
itesimal market share such as 0.05 percent) and direct users of that browser (based
Licensed to Maxeta Technologies <account@maxetatech.com>

240 CHAPTER 11 Developing cross-browser strategies
upon the detected user agent) to a pure-HTML version of the application (one with
no CSS or JavaScript involved).

 This means that their developers are able to provide an optimal experience for the
vast majority of their users (around 99 percent), by passing off antiquated browsers to
a functional equivalent (albeit with a less modern experience).

 Consider the key points of this strategy:

■ No assumptions are made about the user experience of old browsers. After a
browser is no longer able to be tested (and has a negligible market share) it’s
cut off and served with a simplified page, or not supported at all (letting the
chips fall where they may).

■ All users of current and past browsers are guaranteed to have a page that
isn’t broken.

■ Future and unknown browsers are assumed to work.

The primary downside of this strategy is that extra development effort (beyond the
currently targeted browsers and platforms) must be expended to focus on handling
older and future browsers. Despite the cost, this is a smart strategy, as it will allow your
applications to stay viable longer with only minimal updates and changes.

11.2.5 Regressions
Regressions are one of the hardest problems that we’ll encounter in the creation of reus-
able and maintainable JavaScript code. These are bugs, or non-backward-compatible API
changes (mostly to unspecified APIs), that browsers have introduced and that cause
our code to break in unpredictable ways.

NOTE Here we’re using the term regression in its classical definition: a fea-
ture that used to work that no longer functions as expected. This is usually
unintentional, but it’s sometimes caused by deliberate changes that break
existing code.

ANTICIPATING CHANGES

There are some API changes that, with some foresight, we can proactively detect and
handle, as shown in listing 11.2.

 For example, with Internet Explorer 9, Microsoft introduced support for DOM
level 2 event handlers (bound using the addEventListener() method). For code written
prior to IE 9, simple object detection was able to handle that change.

function bindEvent(element, type, handle) {
 if (element.addEventListener) {
 element.addEventListener(type, handle, false);
 }
 else if (element.attachEvent) {
 element.attachEvent("on" + type, handle);
 }
}

Listing 11.2 Anticipating an upcoming API change

Binds using the
standard API b

Binds using a
proprietary API c
Licensed to Maxeta Technologies <account@maxetatech.com>

241The five major development concerns
In this example, we future-proofed our code knowing (or hoping against hope) that
someday Microsoft would bring Internet Explorer into line with DOM standards. If the
browser supports the standards-compliant API, we use object detection to infer that
and use the standard API B. If not, we check to see if the IE-proprietary method is
available and use that c. All else failing, we do nothing.

 Most future API changes, alas, aren’t that easy to predict, and there’s no way to pre-
dict upcoming bugs. This is but one of the very important reasons that we’ve stressed
testing throughout this book. In the face of unpredictable changes that will affect our
code, the best that we can hope for is to be diligent in monitoring our tests for each
browser release, and to quickly address issues that regressions may introduce.

UNPREDICTABLE BUGS

Let’s consider an example of an unpredictable bug: Internet Explorer 7 introduced a
basic XMLHttpRequest wrapper around the native ActiveX request object. As a result,
virtually all JavaScript libraries opted to default to using the XMLHttpRequest object
to perform their Ajax requests (as they should—choosing to use a standards-based API
is nearly always preferred).

 But in Internet Explorer’s implementation, Microsoft broke the handling of
requesting local files; a site loaded from the desktop could no longer request files
using the XMLHttpRequest object.

 No one really caught this bug (or really could have predicted it) until it was too
late, causing it to escape into the wild and break many pages in the process. The solu-
tion was to use the ActiveX implementation primarily for local file requests.

 Having a good suite of tests and keeping close track of upcoming browser releases
is absolutely the best way to deal with future regressions of this nature. It doesn’t have
to be taxing on your normal development cycle, which should already include routine
testing. Running these tests on new browser releases should always be factored into
the planning of any development cycle.

 You can get information on upcoming browser releases from the following locations:

■ Internet Explorer: http://blogs.msdn.com/ie/
■ Firefox: http://ftp.mozilla.org/pub/mozilla.org/firefox/nightly/latest-trunk/
■ WebKit (Safari): http://nightly.webkit.org/
■ Opera: http://snapshot.opera.com/
■ Chrome: http://chrome.blogspot.com/

Diligence is important. Because we can never fully predict the bugs that will be intro-
duced by a browser, it’s best to make sure that we stay on top of our code and quickly
avert any crises that may arise.

 Thankfully, browser vendors are doing a lot to make sure that regressions of this
nature don’t occur. Both Firefox and Opera have test suites from various JavaScript
libraries integrated into their main browser test suite. This allows them to be sure
that no future regressions will be introduced that affect those libraries directly.
While this won’t catch all regressions (and certainly won’t in all browsers), it’s a
Licensed to Maxeta Technologies <account@maxetatech.com>

http://blogs.msdn.com/ie/
http://ftp.mozilla.org/pub/mozilla.org/firefox/nightly/latest-trunk/
http://nightly.webkit.org/
http://snapshot.opera.com/
http://chrome.blogspot.com/

242 CHAPTER 11 Developing cross-browser strategies
great start and shows good progress by the browser vendors toward preventing as
many issues as possible.

 OK, now that we know about the specific challenges we’re facing and some ways to
meet them, let’s explore some strategies that can help us across multiple develop-
ment concerns.

11.3 Implementation strategies
Knowing which issues to be aware of is only half the battle—figuring out effective
strategies for dealing with them, and using them to implement robust cross-browser
code, is another matter.

 There are a wide a range of strategies that we can use, and while not every strategy
will work in every situation, the range that we’ll examine should provide a good set of
tools for covering most of the concerns that we need to address within our robust
code bases.

 We’ll start with something that’s easy and almost trouble free.

11.3.1 Safe cross-browser fixes

The simplest (and safest) classes of cross-browser fixes are those that exhibit two
important traits:

■ They have no negative effects or side effects on other browsers.
■ They use no form of browser or feature detection.

The instances in which we can apply such fixes may be rather rare, but they’re a tactic
that we should always strive for in our applications.

 Let’s look at an example. The following code snippet represents a change
(plucked from jQuery) that came about when working with Internet Explorer:

// ignore negative width and height values
if ((key == 'width' || key == 'height') && parseFloat(value) < 0)
 value = undefined;

Some versions of IE throw an exception when a negative value is set on the height or
width style properties. All other browsers ignore negative input. This workaround sim-
ply ignores all negative values in all browsers. This change prevented an exception
from being thrown in Internet Explorer and had no effect on any other browser. This
was a painless change that provided a unified API to the user (because throwing unex-
pected exceptions is never desired).

 Another example of this type of fix (also from jQuery) appears in the attribute
manipulation code. Consider this:

if (name == "type" &&
 elem.nodeName.toLowerCase() == "input" &&
 elem.parentNode)
 throw "type attribute can't be changed";
Licensed to Maxeta Technologies <account@maxetatech.com>

243Implementation strategies
Internet Explorer doesn’t allow us to manipulate the type attribute of input elements
that are already part of the DOM—attempts to change this attribute result in a propri-
etary exception being thrown. jQuery came to a middle-ground solution: it disallows
all attempts to manipulate the type attribute on injected input elements in all brows-
ers, throwing a uniform informational exception.

 This change to the jQuery code base required no browser or feature detection; it
unified the API across all browsers. The action still results in an exception, but that
exception is uniform across all browser types.

 This particular approach could be considered quite controversial—it purposefully
limits the features of the library in all browsers because of a bug that exists in only one.
The jQuery team weighed this decision carefully and decided that it was better to have a
unified API that worked consistently than an API that would break unexpectedly when
developing cross-browser code. It’s very possible that you’ll come across situations like
this when developing your own reusable code bases, and you’ll need to consider carefully
whether a limiting approach such as this is appropriate for your audience.

 The important thing to remember for these types of code changes is that they pro-
vide a solution that works seamlessly across browsers without the need for browser or
feature detection, effectively making them immune to changes going forward. One
should always strive for solutions that work in this manner, even if the applicable
instances are few and far between.

11.3.2 Object detection

As we’ve previously discussed, object detection is a commonly used approach when writ-
ing cross-browser code, being not only simple but also generally quite effective. It
works by determining if a certain object or object property exists, and if so, assuming
that it provides the implied functionality. (In the next section, we’ll see what to do
about cases where this assumption fails.)

 Most commonly, object detection is used to choose between multiple APIs that pro-
vide duplicate pieces of functionality. For example, the code that we saw in listing 11.2, in
which object detection was used to choose the appropriate event-binding APIs pro-
vided by the browser, is repeated here:

function bindEvent(element, type, handle) {
 if (element.addEventListener) {
 element.addEventListener(type, handle, false); }
 else if (element.attachEvent) {
 element.attachEvent("on" + type, handle); }
}

In this example, we checked to see if a property named addEventListener exists; if
so, we assume that it’s a function that we can execute and that it’ll bind an event lis-
tener to that element. We then proceed to test other APIs, such as attachEvent,
for existence.

 Note that we tested for addEventListener, the standard method provided by the W3C
DOM Events specification, first. This is intentional.
Licensed to Maxeta Technologies <account@maxetatech.com>

244 CHAPTER 11 Developing cross-browser strategies
 Whenever possible, we should default to the standard way of performing any
action. As mentioned before, this will help to make our code as future-proof as possi-
ble. Moreover, pressure from mass-adoption libraries, as well as very vocal and influen-
tial voices in the Twitter-verse and other social media, can encourage browser vendors
to work toward providing the standard means of performing actions.

 An important use of object detection is discovering the facilities provided by the
browser environment in which the code is executing. This allows us to provide fea-
tures that use those facilities in our code, or to determine whether we need to provide
a fallback.

 The following code snippet shows a basic example of detecting the presence of a
browser feature using object detection, to determine whether we should provide full
application functionality or a reduced-experience fallback:

if (typeof document !== "undefined" &&
 (document.addEventListener || document.attachEvent) &&
 document.getElementsByTagName &&
 document.getElementById) {
 // We have enough of an API to work with to build our application
}
else {
 // Provide Fallback
}

Here, we test whether

■ The browser has a document loaded
■ The browser provides a means to bind event handlers
■ The browser can find elements given a tag name
■ The browser can find elements by ID

Failing any of these tests causes us to resort to a fallback position. What is done in the
fallback is up to the expectations of the consumers of the code, and the requirements
placed upon the code. There are a couple of options that can be considered:

■ We could perform further object detection to figure out how to provide a
reduced experience that still uses some JavaScript.

■ We could opt to not execute any JavaScript, falling back to the unscripted
HTML on the page.

■ We could redirect the user to a plainer version of the site. Google does this with
Gmail, for example.

Because object detection has very little overhead associated with it (it’s just a simple
property/object lookup) and is relatively simple in its implementation, it makes for a
good way to provide basic levels of fallback, both at the API and application levels. It’s
a good choice for the first line of defense in your reusable code authoring.

 But what if our assumption about an API working correctly just because it exists
proves to be overly optimistic? Let’s see what we can do about that.
Licensed to Maxeta Technologies <account@maxetatech.com>

245Implementation strategies
11.3.3 Feature simulation

Another means that we have of dealing with regressions, and the most effective means
of detecting fixes to browser bugs, is feature simulation. In contrast to object detection,
which is simply an object/property lookup, feature simulation performs a complete
run-through of a feature to make sure that it works as we’d expect it to.

 While object detection is a good way to check that a feature exists, it doesn’t guar-
antee that the feature will behave as intended. But if we know of specific bugs, we can
quickly build tests to check when the feature bug is fixed as well as write code to work
around the bug until that time.

 As an example, Internet Explorer 8 and earlier versions will erroneously return
both elements and comments if we execute getElementsByTagName("*"). No amount of
object detection is going to determine if this will happen or not. As we hope often
happens, this bug has been fixed by the Internet Explorer team in the IE 9 release of
the browser.

 Let’s write a feature simulation to determine if the getElementsByTagName() method
will work as we expect it to:

window.findByTagWorksAsExpected = (function(){
 var div = document.createElement("div");
 div.appendChild(document.createComment("test"));
 return div.getElementsByTagName("*").length === 0;
})();

In this example, we’ve written an immediate function that returns true if a call to
getElementsByTagName("*") functions as expected, and false otherwise. The steps of
this test function are fairly simple:

■ Create a detached <div> element.
■ Add a comment node to the <div>.
■ Call the function, see how many values are returned, and return true or false

depending upon the result.

Well, knowing that there’s a problem is only half the battle. What can we do with
this knowledge to make things better for our code? The following listing shows a
use of the preceding feature-simulation snippet in a useful context: working
around the bug.

<!DOCTYPE html>
<html>
 <head>
 <title>Listing 11.3</title>
 <script type="text/javascript" src="../scripts/assert.js"></script>
 <link href="../styles/assert.css" rel="stylesheet" type="text/css">
 </head>
 <body>

Listing 11.3 Putting feature simulation into practice to work around a browser bug
Licensed to Maxeta Technologies <account@maxetatech.com>

246 CHAPTER 11 Developing cross-browser strategies
 <div><!-- comment #1--></div>
 <div><!-- comment #2--></div>

 <script type="text/javascript">

 function getAllElements(name) {

 if (!window.findByTagWorksAsExpected) {

 window.findByTagWorksAsExpected = (function(){
 var div = document.createElement("div");
 div.appendChild(document.createComment("test"));
 return div.getElementsByTagName("*").length === 0;
 })();
 }

 var allElements = document.getElementsByTagName('*');

 if (!window.findByTagWorksAsExpected) {
 for (var n = allElements.length - 1; n >= 0; n--) {
 if (allElements[n].nodeType === 1)
 allElements.splice(n,1);
 }
 }

 return allElements;

 }

 var elements = getAllElements();
 var elementCount = elements.length;

 for (var n = 0; n < elementCount; n++) {
 assert(elements[n].nodeType === 1,
 "Node is an element node");
 }

 </script>

 </body>
</html>

In this code, we set up some <div> elements containing comment nodes that we’ll
later use for testing. Then we get down to business with some script.

 Because using document.getElementsByTagName('*') directly is suspect, we define an
alternate method, getAllElements(), to use in its place. We want this method to just
factor down into a call to document.getElementsByTagName('*') on browsers that imple-
ment it correctly, but to use a fallback that produces the correct results on browsers
that don’t.

 The first thing that our method does is to use the immediate function that we
developed previously to determine if the feature works as expected c. Note that
we store the result in a window-scoped variable so that we can refer to it later, and we
check to see if it’s already been set, so that we only run the (relatively expensive) fea-
ture-simulation check once B.

 After the check, we run the call to document.getElementsByTagName('*') and store
the result in a variable d.

Tests if we already know
whether browser works

as expected
 b

If not, determines
if the feature works
as expected in the
browser or is broken

 c
Calls suspect
feature and
stores
result d

Fixes things up
if we know
that browser
is buggy

 e

Sets up for
testing f

Tests feature with
workaround g
Licensed to Maxeta Technologies <account@maxetatech.com>

247Implementation strategies
 At this point, we have the node list of all elements, and we know whether we’re oper-
ating in a browser that has the comment node problem or not. If we had determined
that the problem exists, we run through the nodes, stripping out any that aren’t element
nodes e. This process is skipped for browsers that don’t have that problem.

NOTE The nodeType of element nodes is 1, while that of comment nodes is 8.
Modern browsers (including versions 8 and 9 of IE) define a set of constants
on the Node object, such as Node.ELEMENT_NODE and Node.COMMENT_NODE. As our fix
will be triggered in older browsers, we can’t assume that these constants exist,
so we’ve used hard-coded values. You can find a complete list of node type val-
ues at https://developer.mozilla.org/en/nodeType.

Finally, we test our new method by using it f and asserting that the returned node list
only contains element nodes g.

 This example demonstrates how feature simulation works in two phases.
 First, a simple test is run to determine if a feature works as we expect it to. It’s

important to verify the integrity of a feature (making sure it works correctly) rather
than explicitly testing for the presence of a bug. While that may be a semantic distinc-
tion, it’s one that’s important to keep in mind.

 Second, the results of the test are later used in our program to speed up looping
through an array of elements. Because a browser that works correctly (one that
returns only elements) doesn’t need to perform the element checks on every stage of
the loop, we can completely skip it and not pay any performance penalties in browsers
that work correctly.

 That’s the most common idiom used in feature simulation: making sure a feature
works as expected and providing fallback code in non-working browsers.

 The most important point to take into consideration when using feature simula-
tion is that it’s a trade-off. Paying the extra performance overhead of the initial sim-
ulation, along with the extra lines of code in our programs, gives us the benefit of
knowing that a suspect feature will work as expected in all supported browsers and
makes our code immune to breaking upon future bug fixes. This immunity can be
absolutely priceless when creating reusable code bases.

 Feature simulation is great when we can test whether a browser is broken or not,
but what can we do about browser problems that stubbornly resist being tested?

11.3.4 Untestable browser issues

Unfortunately there are a number of possible problem areas in JavaScript and the
DOM that are either impossible or prohibitively expensive to test for. These situations
are fortunately rather rare, but when we encounter them, it always pays to spend some
time investigating the matter to see if there’s something we can do about it.

 The following sections discuss some known issues that are impossible to test using
any conventional JavaScript interactions.
Licensed to Maxeta Technologies <account@maxetatech.com>

https://developer.mozilla.org/en/nodeType

248 CHAPTER 11 Developing cross-browser strategies
EVENT HANDLER BINDINGS

One of the infuriating lapses in the browsers is the inability to determine if an event
handler has been bound. The browsers don’t provide any way of determining if any
functions have been bound to an event listener on an element. Because of this, there’s
no way to remove all bound event handlers from an element unless we’ve maintained
references to all bound handlers as we create them.

EVENT FIRING

Another aggravation is determining if an event will fire. While it’s possible to deter-
mine if a browser supports a means of binding an event (as we’ve seen a few times ear-
lier in this chapter), it’s not possible to know if a browser will actually fire an event.
There are a couple places where this becomes problematic.

 First, if a script is loaded dynamically after the page itself has already loaded, it may
try to bind a listener to wait for the window to load when, in fact, that event already
happened. As there’s no way to determine if the event has already occurred, the code
may wind up waiting forever to execute.

 The second situation occurs if a script wishes to use custom events provided by a
browser as an alternative. For example, Internet Explorer provides mouseenter and
mouseleave events, which simplify the process of determining when a user’s mouse
enters or leaves an element’s boundaries. These are frequently used as alternatives to
the mouseover and mouseout events, because they act slightly more intuitively than the
standard events. But because there’s no way of determining if these events will fire
without first binding the events and waiting for some user interaction against them,
it’s hard to use them in reusable code.

CSS PROPERTY EFFECTS

Yet another pain point is determining whether changing certain CSS properties actually
affects the presentation. A number of CSS properties only affect the visual representation
of the display and nothing else; they don’t change surrounding elements or affect other
properties on the element. Examples are color, backgroundColor, and opacity.

 Because of this, there’s no way to programmatically determine if changing these
style properties will generate the effects desired. The only way to verify the impact is
through a visual examination of the page.

BROWSER CRASHES

Testing script that causes the browser to crash is another annoyance. Code that causes
a browser to crash is especially problematic, because unlike exceptions that can be
easily caught and handled, these will always cause the browser to break.

 For example, in older versions of Safari, creating a regular expression that used
Unicode-character ranges would always cause the browser to crash, as in the follow-
ing example:

new RegExp("[\\w\u0128-\uFFFF*_-]+");

The problem with this is that it’s not possible to test whether this problem exists using fea-
ture simulation, because the test itself will always produce a crash in that older browser.
Licensed to Maxeta Technologies <account@maxetatech.com>

249Reducing assumptions
 Additionally, bugs that cause crashes to occur forever become embroiled in diffi-
culty, because while it may be acceptable for JavaScript to be disabled in some seg-
ment of the population using your browser, it’s never acceptable to outright crash the
browser of those users.

INCONGRUOUS APIS
Back in section 11.3.1, we saw how jQuery decided to disallow the ability to change the
type attribute in all browsers due to a bug in Internet Explorer. We could test this fea-
ture and only disable it in Internet Explorer, but that would set up an incongruity in
which the API would work differently from browser to browser. In situations such as
this, where a bug is so bad that it causes an API to break, the only option is to work
around the affected area and provide a different solution.

 In addition to impossible-to-test problems, there are issues that are possible to test,
but that are prohibitively difficult to test effectively. Let’s look at some of them.

API PERFORMANCE

Sometimes specific APIs are faster or slower in different browsers. When writing reus-
able and robust code, it’s important to try to use the APIs that provide good perfor-
mance. But it’s not always obvious which API that is.

 Effectively conducting performance analysis of a feature usually entails throwing a
large amount of data at it, and that usually takes a relatively long time. Therefore, it’s
not something we can do in our code in the same way that we used feature simulation.

AJAX ISSUES

Determining if Ajax requests work correctly is another thorn in our sides. As was men-
tioned when we looked at regressions, Internet Explorer broke the ability to request
local files via the XMLHttpRequest object in Internet Explorer 7. We could test to see
if this bug has been fixed, but to do so we’d have to perform an extra request on every
page load that attempted to perform a request. That’s not optimal.

 And not only that, but an extra file would have to be included with the library
whose sole reason for being was to serve as a target for these extra requests. The over-
head of both these matters is prohibitive and would certainly not be worth the extra
time and resources.

 Untestable features are a significant hassle that hinders our writing of reusable
JavaScript, but they can frequently be worked around with a bit of effort and clever-
ness. By utilizing alternative techniques, or constructing our APIs in such a manner as
to obviate these issues in the first place, we’ll likely be able to build effective code,
despite the odds stacked against us.

11.4 Reducing assumptions
Writing cross-browser, reusable code is a battle of assumptions, but by using clever
detection and authoring, we can reduce the number of assumptions that we make in
our code. When we make assumptions about the code that we write, we stand to
encounter problems further down the road.
Licensed to Maxeta Technologies <account@maxetatech.com>

250 CHAPTER 11 Developing cross-browser strategies
 For example, assuming that an issue or a bug will always exist in a specific browser
is a huge and dangerous assumption. Instead, testing for the problem (as we’ve done
throughout this chapter) proves to be much more effective. In our coding, we should
always strive to reduce the number of assumptions that we make, effectively reducing
the room for error and the probability that something’s going to come back and bite
us in the behind.

 The most common area for making assumptions in JavaScript is in user agent
detection. Specifically, analyzing the user agent provided by a browser (navigator
.userAgent) and using it to make an assumption about how the browser will behave—in
other words, browser detection. Unfortunately, most user-agent string analysis proves to
be a superb source of future-induced errors. Assuming that a bug, issue, or proprietary
feature will always be linked to a specific browser is a recipe for disaster.

 But reality intervenes when it comes to minimizing assumptions: it’s virtually
impossible to remove all of them. At some point, we’ll have to assume that a browser
will do what it’s supposed to do. Figuring out the point at which that balance can be
struck is completely up to the developer, and it’s what “separates the men from the
boys,” as they say (with apologies to our female readers).

 For example, let’s re-examine the event-attaching code that we’ve already seen a
number of times:

function bindEvent(element, type, handle) {
 if (element.addEventListener) {
 element.addEventListener(type, handle, false);
 }
 else if (element.attachEvent) {
 element.attachEvent("on" + type, handle);
 }
}

Without looking ahead, see if you can spot three assumptions that are made by this
code. Go on, we’ll wait.

 (Jeopardy Theme plays ...)

How’d you do? In the preceding code, we made at least these three assumptions:

■ That the properties that we’re checking are, in fact, callable functions
■ That they’re the correct functions, performing the actions that we expect
■ That these two methods are the only possible ways of binding an event

We could easily get rid of the first assumption by adding checks to see if the properties
are, in fact, functions. Tackling the remaining two points is much more difficult.

 In our code, we always need to decide how many assumptions are optimal for our
requirements, our target audience, and for us. Frequently, reducing the number of
assumptions also increases the size and complexity of the code base. It’s fully possible,
and rather easy, to attempt to reduce assumptions to the point of complete insanity,
but at some point we’ll have to stop and take stock of what we have, say “good
Licensed to Maxeta Technologies <account@maxetatech.com>

251Summary
enough,” and work from there. Remember that even the least-assuming code is still
prone to regressions introduced by a browser.

11.5 Summary
Let’s recap what we covered in this chapter:

■ Reusable cross-browser development involves juggling three factors:
– Code size—Keeping the file size small
– Performance overhead—Keeping the performance level above a palatable

minimum
– API quality—Making sure that the APIs provided work uniformly across

browsers
■ There’s no magic formula for determining the correct balance of these factors.
■ The development factors are something that will have to be balanced by every

developer in their individual development efforts.
■ Thankfully, by using smart techniques like object detection and feature simula-

tion, it’s possible to defend against the numerous directions from which reus-
able code will be attacked without making any undue sacrifices.

In this chapter we spent a good deal of time talking about the challenges of cross-browser
differences. In the next chapter, we’re going to tackle head-on the problems caused by
the differing ways that the browsers handle attributes, properties, and styling.
Licensed to Maxeta Technologies <account@maxetatech.com>

Licensed to Maxeta Technologies <account@maxetatech.com>

Cutting through attributes,
properties, and CSS
Excepting the previous chapter, a large percentage of this book so far has dealt with
JavaScript, the language. And although there are plenty of nuances to pure Java-
Script as a language, once we throw the browser DOM into the mix, things can
really get confusing.

 Understanding DOM concepts and how JavaScript relates to these concepts is
an important part of becoming a JavaScript ninja, especially considering the baf-
fling ways that some DOM concepts seem to defy logic. The area of DOM attri-
butes and properties has left many JavaScript page authors quivering with
confusion. Not only are there some very nuanced behaviors between attributes and
properties, but there are also few other areas that are more riddled with bugs
and cross-browser issues.

This chapter covers
■ Understanding DOM attributes and

DOM properties
■ Dealing with cross-browser attributes

and styles
■ Handling element dimension properties
■ Discovering computed styles
253

Licensed to Maxeta Technologies <account@maxetatech.com>

254 CHAPTER 12 Cutting through attributes, properties, and CSS
 But attributes and properties are important concepts: attributes are an integral
part of how the DOM gets built, and properties are the primary means by which ele-
ments hold runtime information, and by which this information can be accessed.

 Let’s take a look at a quick example that demonstrates the capacity for befuddlement:

<script type="text/javascript">

 var image = document.getElementsByTagName('img')[0];

 var newSrc = '../images/ninja-with-pole.png';

 image.src = newSrc;

 assert(image.src === newSrc,
 'the image source is now ' + image.src);

 assert(image.getAttribute('src') === '../images/ninja-with-nunchuks.png',
 'the image src attribute is ' + image.getAttribute('src'));

</script>

In this snippet, we create an image tag, get a reference to it, and change its src property
to a new value. That seems pretty straightforward, but we run two tests to make sure:

■ We test that the src property obtained the value we just gave it. After all, if we
were to say x = 213, we’d certainly expect x’s value to be 213.

■ We didn’t change the attribute, so it should stay the same. Right?

But when we load the code into a browser, we find that both tests fail.
 We see that the src property isn’t the value that we assigned, but rather something

akin to

http://localhost/ninja/images/ninja-with-pole.png

We assigned a value to a property, so shouldn’t we expect it to have that exact value?
 Even more oddly, even though we didn’t change the attribute on the element, the

failing test shows that the value of the src attribute has changed to

../images/ninja-with-pole.png

What gives?
 In this chapter, we’ll examine all the conundrums that the browsers throw at us

with respect to element properties and attributes, and we’ll discover why the results
weren’t exactly what we might have expected.

 The same goes for CSS and the styling of elements. Many of the difficulties that we
run into when constructing a dynamic web application stem from the complications
of setting and getting element styling. This book can’t cover all that’s known about
handling element styling (that’s enough to fill an entire other book), but the core
essentials will be discussed.

 Let’s start by understanding exactly what element attributes and properties are.
Licensed to Maxeta Technologies <account@maxetatech.com>

255DOM attributes and properties
12.1 DOM attributes and properties
When accessing the values of element attributes, we have two possible options: using
the traditional DOM methods of getAttribute and setAttribute, or using properties of
the DOM objects that correspond to the attributes.

 For example, to obtain the id of an element whose reference is stored in variable e,
we could use either of the following:

e.getAttribute('id')
e.id

Either way will give us the value of the id.
 Let’s examine the following code to better understand how attribute values and

their corresponding properties behave.

<div></div>

<script type="text/javascript">

 window.onload = function(){

 var div = document.getElementsByTagName("div")[0];

 div.setAttribute("id","ninja-1");
 assert(div.getAttribute('id') === "ninja-1",
 "Attribute successfully changed");

 div.id = "ninja-2";
 assert(div.id === "ninja-2",
 "Property successfully changed");

 div.id = "ninja-3";
 assert(div.id === "ninja-3",
 "Property successfully changed");
 assert(div.getAttribute('id') === "ninja-3",
 "Attribute successfully changed via property");

 div.setAttribute("id","ninja-4");
 assert(div.id === "ninja-4",
 "Property successfully changed via attribute");
 assert(div.getAttribute('id') === "ninja-4",
 "Attribute successfully changed");

 };

</script>

This example shows some interesting behavior with respect to element attributes and
element properties. It starts by defining a simple <div> element that we’ll use as a test
subject. Within the page’s load handler (to ensure that the DOM is finished being
built) we obtain a reference to the lone <div> element B and then run a few tests.

 In our first test c, we set the id attribute to the value "ninja-1" via the set-
Attribute() method. Then we assert that getAttribute() returns the same value for

Listing 12.1 Accessing attribute values via DOM methods and properties

Obtains an element
reference b

Tests the DOM
method c

Tests the
property value d

Tests the property/
attribute correspondence e

Tests more
property/attribute
correspondence

 f
Licensed to Maxeta Technologies <account@maxetatech.com>

256 CHAPTER 12 Cutting through attributes, properties, and CSS
that attribute. It should be no surprise to find that this test works just fine when we
load the page.

 Similarly, in the next test d, we set the id property to the value "ninja-2" and then
verify that the property value was indeed changed. No problem.

 The next test e is when things get interesting. We again set the id property to a
new value, in this case "ninja-3", and again verify that the property value was changed.
But then we also assert that not only should the property value have changed, but also
the value of the id attribute. Both assertions pass. From this we learn that the id prop-
erty and the id attribute are somehow linked together. Changing the id property value
also changes the id attribute value.

 The next test f proves that it also works the other way around: setting an attribute
value also changes the corresponding property value.

 But don’t let this fool you into thinking that the property and attribute are sharing
the same value—they aren’t. We’ll see later in this chapter that the attribute and cor-
responding property, while linked, aren’t always identical. You already got a glimpse of
this in the chapter introduction.

 There are five important points to consider with respect to attributes and properties:

■ Cross-browser naming
■ Naming limitations
■ HTML versus XML differences
■ Custom attribute behavior
■ Performance

Let’s examine each of these points.

12.1.1 Cross-browser naming

When it comes to the naming of attributes and their corresponding properties, prop-
erty names are generally more consistent from browser to browser. If we’re able to
access a property by a certain name in one browser, there’s a good chance of the name
being the same in other browsers as well. There are some differences, but there tend to
be more differences in the naming of the attributes than the naming of properties.

 For example, while the class attribute can be obtained as class in most browsers,
Internet Explorer requires className. This is likely because (as we’ll see in just a bit)
the name of the property is className, and so within IE the name of the attribute and
the property are consistent. Consistency is usually a good thing, but the naming differ-
ence across browsers can be quite frustrating.

 Libraries such as jQuery help to normalize these naming discrepancies by allowing
us to specify one name regardless of the platform, and it then performs any necessary
translation behind the scenes. But without library assistance, we need to be aware of
the differences and write our own code accordingly.
Licensed to Maxeta Technologies <account@maxetatech.com>

257DOM attributes and properties
12.1.2 Naming restrictions

Attributes, being represented by strings passed to DOM methods, can be named with a
rather free reign, but property names, which can be referenced as identifiers using
the dot operator notation, are more restricted, as they must conform to the rules for
identifiers, and there are some reserved words that are disallowed.

 The ECMAScript specification (found at http://www.ecma-international.org/publi-
cations/standards/Ecma-262.htm) states that certain keywords can’t be used as prop-
erty names, so alternatives have been defined. For example, the for attribute of
<label> elements is represented by the htmlFor property, because for is a reserved
word, and the class attribute of all elements is represented by the className property,
as class is also reserved. Additionally, attribute names that are composed of multiple
words, such as readonly are represented by camel-case property names; readOnly in this
case. More examples of these differences can be found in table 12.1.

Note that HTML5 adds new elements and attributes that may need to be included
in this list when the dust settles. Some are accessKey, contextMenu, dropZone, spell-
Check, hrefLang, dateTime, pubDate, isMap, srcDoc, mediaGroup, autoComplete, noValidate,
and radioGroup.

12.1.3 Differences between XML and HTML

The whole notion of properties that automatically correspond to attributes is a peculiar-
ity of the HTML DOM. When dealing with an XML DOM, no properties are automatically

Table 12.1 Cases where property names and attribute names differ

Attribute name Property name

for htmlFor

class className

readonly readOnly

maxlength maxLength

cellspacing cellSpacing

rowspan rowSpan

colspan colSpan

tabindex tabIndex

cellpadding cellPadding

usemap useMap

frameborder frameBorder

contenteditable contentEditable
Licensed to Maxeta Technologies <account@maxetatech.com>

http://www.ecma-international.org/publications/standards/Ecma-262.htm
http://www.ecma-international.org/publications/standards/Ecma-262.htm

258 CHAPTER 12 Cutting through attributes, properties, and CSS
created on the elements to represent attribute values. Therefore, we’ll need to use the
traditional DOM attribute methods to obtain attribute values. This isn’t a horrible
imposition, because XML documents usually don’t exhibit the normal litany of nam-
ing mistakes that you see with DOM attributes in HTML documents.

NOTE If the term XML DOM sent you off the tracks, it’s just an in-memory
object structure created to represent an XML document in the same way that
the HTML DOM represents an HTML document.

It’s a good idea to put some form of a check in our code to determine if an element
(or document) is an XML element (or document) so we can proceed appropriately.
The following function shows an example of this type of check:

function isXML(elem) {
 return (elem.ownerDocument ||
 elem.documentElement.nodeName.toLowerCase() !== "html";
}

This function will return true if the element is an XML element, and false otherwise.

12.1.4 Behavior of custom attributes

Not all attributes are represented by element properties. While it’s generally true for
attributes that are natively specified by the HTML DOM, custom attributes that we may
place on the elements in our pages don’t automatically become represented by ele-
ment properties. To access the value of a custom attribute, we need to use the DOM
methods getAttribute() and setAttribute().

 If you’re not sure if a property for an attribute exists or not, you can always test for
it and fall back to the DOM methods if it doesn’t exist. Here’s an example:

var value = element.someValue ? element.someValue :
 element.getAttribute('someValue');

TIP In HTML5, use the prefix data- for all custom attributes to keep them
valid in the eye of the HTML5 specification. It’s recommended you do this
even if you’re still using HTML4, in order to future-proof your markup.
Besides, it’s a good convention that clearly separates custom attributes from
native attributes.

12.1.5 Performance considerations

In general, property access is faster than the corresponding DOM attribute methods,
especially in Internet Explorer. Let’s prove that to ourselves.

 Remember back in chapter 2 when we talked about performance testing? The way
that we do that is to measure how long it takes to repeat an operation many times. We
can’t measure the performance of a single operation; the duration is far too short to
capture accurately (harken back to our timer discussion in chapter 8).

 If one operation is too quick to measure, what about five million of them? That’s
exactly what the following code measures.
Licensed to Maxeta Technologies <account@maxetatech.com>

259DOM attributes and properties
<div id="testSubject"></div>

<script type="text/javascript">

 var count = 5000000;
 var n;
 var begin = new Date();
 var end;
 var testSubject = document.getElementById('testSubject');
 var value;

 for (n = 0; n < count; n++) {
 value = testSubject.getAttribute('id');
 }
 end = new Date();
 assert(true,'Time for DOM method read: ' +
 (end.getTime() - begin.getTime()));

 begin = new Date();
 for (n = 0; n < count; n++) {
 value = testSubject.id;
 }
 end = new Date();
 assert(true,'Time for property read: ' +
 (end.getTime() - begin.getTime()));

 begin = new Date();
 for (n = 0; n < count; n++) {
 testSubject.setAttribute('id','testSubject');
 }
 end = new Date();
 assert(true,'Time for DOM method write: ' +
 (end.getTime() - begin.getTime()));

 begin = new Date();
 for (n = 0; n < count; n++) {
 testSubject.id = 'testSubject';
 }
 end = new Date();
 assert(true,'Time for property write: ' +
 (end.getTime() - begin.getTime()));

</script>

This code conducts a performance test of the DOM getAttribute() and set-
Attribute() methods against similar operations for reading and writing the corre-
sponding property.

 We ran this test on multiple browsers, and the results we gathered are shown in
table 12.2. All duration values are in milliseconds. As you can see, the property get and
set operations are almost always faster than getAttribute() and setAttribute().

NOTE Most of these tests were conducted on a 2011 MacBook Pro with a
2.8 GHz i7 processor and 8 GB of RAM running OS X Lion. The IE tests were
conducted on a PC with the same i7 2.8GHz processor and 4 GB RAM running
Windows 7 (64 bits).

Listing 12.2 Comparing the performance of DOM methods versus properties

Sets up
variables in
advance

Tests a DOM
method read

Tests a property
read

Tests a DOM
method write

Tests a property
write
Licensed to Maxeta Technologies <account@maxetatech.com>

260 CHAPTER 12 Cutting through attributes, properties, and CSS
The results of a sample run of this test are shown in figure 12.1.
 While these differences in speed may not be crippling for individual operations,

they can add up if performed many times—in a tight loop, for example. To improve
performance, we might want to implement a method by which we can access a value
by property, if the property exists, and by DOM method as a fallback when it doesn’t.
Consider the following code.

<div id="testSubject"></div>

<script type="text/javascript">

 (function(){

 var translations = {
 "for": "htmlFor",
 "class": "className",
 readonly: "readOnly",
 maxlength: "maxLength",
 cellspacing: "cellSpacing",
 rowspan: "rowSpan",
 colspan: "colSpan",
 tabindex: "tabIndex",
 cellpadding: "cellPadding",
 usemap: "useMap",

Table 12.2 Performance test results pitting DOM methods versus property access

Browser getAttribute() Property get setAttribute() Property set

Internet Explorer 9 3970 940 7667 956

Firefox 14 827 434 1414 1584

Safari 5 268 142 1055 627

Chrome 21 294 159 1140 862

Opera 12 2109 1642 2370 1635

Listing 12.3 A function for setting and getting attribute values

Figure 12.1 Results of running
our performance test in the
Chrome browser

Creates a
private scope b

Creates the
translation map c
Licensed to Maxeta Technologies <account@maxetatech.com>

261DOM attributes and properties
 frameborder: "frameBorder",
 contenteditable: "contentEditable"

 };

 window.attr = function(element,name,value) {
 var property = translations[name] || name,
 propertyExists = typeof element[property] !== "undefined";

 if (typeof value !== "undefined") {
 if (propertyExists) {
 element[property] = value;
 }
 else {
 element.setAttribute(name,value);
 }
 }

 return propertyExists ?
 element[property] :
 element.getAttribute(name);
 };

 })();

 var subject = document.getElementById('testSubject');
 assert(attr(subject,'id') === 'testSubject',
 "id value fetched");

 assert(attr(subject,'id','other') === 'other',
 "new id value set");
 assert(attr(subject,'id') === 'other',
 "new id value fetched");

 assert(attr(subject,'data-custom','whatever') === 'whatever',
 "custom attribute set");
 assert(attr(subject,'data-custom') === 'whatever',
 "custom attribute fetched");

</script>

This example not only establishes a setter and getter function for attribute and prop-
erty values, it also shows a number of important concepts that we can use elsewhere in
our code.

 In our function, we need to translate between property and attribute names, as
outlined in table 12.1, so we create a translation map c. But we don’t want to pollute
the global namespace with this map; we want it to be available to the function in its
local scope, but no farther than that.

 We accomplish that by enclosing the map definition and function declaration
within an immediate function B, which creates a local scope. The translation map c
isn’t accessible outside the immediate function, but the set/get function that we also
define d within the immediate function has access to the map via its closure. Nifty, eh?

 Another important principle is exhibited by our attr() function itself—the func-
tion can act as both a setter and a getter simply by inspecting its own argument list. If
a value argument is passed to the function, the function acts as a setter, setting the

Defines the
set/get
function

 d

Tests our new
function
Licensed to Maxeta Technologies <account@maxetatech.com>

262 CHAPTER 12 Cutting through attributes, properties, and CSS
passed value as the value of the attribute. If the value argument is omitted and only
the first two arguments are passed, it acts as a getter, retrieving the value of the speci-
fied attribute.

 In either case, the value of the attribute is returned, which makes it easy to use the
function in either of its modes in a function-call chain.

 It should be noted that the preceding implementation doesn’t take into account
many of the cross-browser issues that plague attribute access. Let’s find out exactly
what those issues are.

12.2 Cross-browser attribute issues
Cross-browser issues in general can be quite harrowing, and the number of cross-
browser issues at play in the area of attribute values isn’t trivial. Let’s explore a few of the
major and most commonly encountered issues, starting with DOM name expansion.

12.2.1 DOM id/name expansion

The nastiest bug to deal with is a misimplementation of the DOM code in the browsers.
 As we pointed out in the previous chapter, the problem is that all of the “Big Five”

browsers take the id or name values specified on form input elements and add refer-
ences to the elements as properties on the parent <form> element. These generated
properties actively overwrite any existing properties of the same name that might
already be on the form element.

 Additionally, Internet Explorer doesn’t just replace the properties; it also replaces
the attribute values with references to the elements.

 These problems can be seen in the following listing.

<form id="testForm" action="/">
 <input type="text" id="id"/>
 <input type="text" name="action"/>
</form>

<script type="text/javascript">
 window.onload = function(){

 var form = document.getElementById('testForm');

 assert(form.id === 'testForm',
 "the id property is untouched");
 assert(form.action === '/',
 "the action property is untouched");

 assert(form.getAttribute('id') === 'testForm',
 "the id attribute is untouched");
 assert(form.getAttribute('action') === '/',
 "the action attribute is untouched");

 };
</script>

Listing 12.4 Demonstrating how browsers strong-arm form elements

Creates a
test subject b

Tests if properties
have been stomped
upon

 c

Tests if attributes
have been mangled d
Licensed to Maxeta Technologies <account@maxetatech.com>

263Cross-browser attribute issues
This series of tests shows how this unfortunate feature can cause loss of markup data.
First, we define an HTML form B with two input element children. One child has an
ID of id, and the other a name of action.

 Out first test asserts c that the form element’s id and action properties should be
as we set them in the HTML markup, and the second set of tests d asserts that the
attribute values reflect the markup.

 But upon running the test in Chrome, we see the display in figure 12.2.
 In all modern browsers, the id and action properties have been overwritten with

references to the input elements simply because of the id and name values chosen for
those elements. The original property values are gone forever! In browsers other than
IE, we can obtain the original values using the DOM attribute methods, but in IE, even
those values are replaced.

 But we’re ninjas and won’t be denied. Despite the best efforts of the browsers to
keep us from the values, we’ve got a trick up our sleeves. We can gain access to the
original DOM node representing the element attribute itself. This node remains
untainted by the browser tinkering. To get the value from a DOM attribute node, say
the one for the action attribute, we’d use this code:

var actionValue = element.getAttibuteNode("action").nodeValue;

As an exercise, see if you can use this approach to augment the attr() method that we
developed in listing 12.3 to detect when a form element node’s attribute has been
replaced by an element reference, and fall back to getting the value from the DOM
node when it has been replaced.

NOTE If you’re interested in the sort of problems that arise from these ele-
ment expansions, we recommend checking out Juriy Zaytsev’s DOMLint tool
at http://kangax.github.com/domlint/, which is capable of analyzing a page
for potential problems, and Garrett Smith’s write-up of the issue, “Unsafe
Names for HTML Form Controls,” at http://jibbering.com/faq/names/.

While this issue can’t be considered a bug, as it’s the browsers’ intended behavior, it’s
destructive and certainly unnecessary when element references are so easy to obtain
with methods such as document.getElementById() and other similar methods.

Figure 12.2 Looks as if the markup
values have been stomped upon!
Licensed to Maxeta Technologies <account@maxetatech.com>

http://kangax.github.com/domlint/
http://jibbering.com/faq/names/

264 CHAPTER 12 Cutting through attributes, properties, and CSS

Test
attr
value
what
expe
and
Pass
But this is far from the only issue with how the browsers handle attributes. Let’s look
at another.

12.2.2 URL normalization
There’s a “feature” in all modern browsers that violates the principle of least surprise:
when accessing a property that references a URL (such as href, src, or action) the URL
value is automatically converted from its original form into a full canonical URL. (We
alluded to this in the chapter introduction.)

 We’ve already warned you about the automatic normalization, but let’s write a test
that demonstrates this issue in the next listing.

Self

<script type="text/javascript">
 var link = document.getElementById('testSubject');

 var linkHref = link.getAttributeNode('href').nodeValue;

 assert(linkHref === 'listing-12.5.html',
 'link node value is ok');

 assert(link.href === 'listing-12.5.html',
 'link property value is ok');

 assert(link.getAttribute('href') === linkHref,
 'link attribute not modified');

</script>

In this test, we establish an anchor tag with an href attribute that refers back to the
same page. Then we obtain a reference to this element for testing.

 The trick we learned in the previous section—diving down into the original nodes
of the DOM to find the original value of the markup—is then employed B. This value
is checked c before we blindly assume that our trick worked.

 Then we test the property to see if it matches d. In all browsers this test fails, as
the value has been normalized to a full URL.

 Lastly, we test to see if the attribute value has been modified e. In all browsers but
older versions of IE, the test passes.

 Not only do these tests show the nature of the issue, they also reveal a workaround:
we can use the DOM node trick to obtain such attributes when we want to be sure to
obtain an unmodified value.

 For older versions of IE (prior to IE 8), another workaround is a proprietary exten-
sion to the getAttribute() method in Internet Explorer. Passing the magic number 2 as
a second parameter will force the result to be the unnormalized value:

var original = link.getAttribute('href',2);

We can use either workaround in modern browsers: the DOM node trick will work across
all browsers, and modern browsers other than IE will ignore any second parameter

Listing 12.5 Demonstrating the URL normalization issue

Obtains the original
node value right from
the horse’s mouth
(the node information)

 b

Tests that the original
node value matches that
specified in the element

markup. This test passes.
 c

Tests that the href property
contains what we’d expect: the same
value. But it doesn’t! This test fails.

 d

s that
ibute
 is
 we
ct,
it is!
es.

 e
Licensed to Maxeta Technologies <account@maxetatech.com>

265Cross-browser attribute issues
passed to getAttribute(). Older versions of Opera will crash for no apparent reason
when a second parameter is passed to getAttribute(), so avoid that approach if such
versions of Opera are in your support matrix.

 The chances that the URL normalization issue will be a problem for your code are
small, unless your code absolutely needs to get at the unnormalized values.

 Now let’s examine an issue that may have more far-reaching consequences.

12.2.3 The style attribute

An important element attribute whose values are particularly challenging to set and get is
the style attribute. HTML DOM elements are given a style property, which we can
access to gain information about the style information of the element; for example,
element.style.color. But if we want to get the original style string that was specified on
the element, it becomes more challenging. For example, consider this markup:

<div style='color:red;'></div>

What if we wanted to obtain the original color:red; string?
 The style property is of no help at all, as it’s set to an object that contains the

parsed results of the original string. And although getAttribute("style") works in
most browsers, it doesn’t work in Internet Explorer. Instead, IE stores a property on
the style object that we can use to obtain the original style string, named cssText; for
example, element.style.cssText.

 While directly getting the original value of the style attribute may be a compara-
tively uncommon operation (as opposed to accessing the resulting style object),
there’s another browser problem that’s likely to affect any page that creates DOM ele-
ments at runtime.

12.2.4 The type attribute

Another Internet Explorer gotcha, for IE 8 and earlier versions, affects the type attri-
bute of <input> elements, and there isn’t any reasonable workaround. Once an <input>
element has been inserted into a document, its type attribute can no longer be
changed. In fact, IE throws an exception if you attempt to change it.

 For example, consider the following code in which we try to change the type of an
input element after the fact.

<form id="testForm" action="/"></form>

<script type="text/javascript">
 window.onload = function(){

 var input = document.createElement('input');

 input.type = 'text';
 assert(input.type == 'text',
 'Input type is text');

Listing 12.6 Changing an input element’s type after insertion

Creates a new element,
letting the type

attribute default b

Sets the type property
and checks it c
Licensed to Maxeta Technologies <account@maxetatech.com>

266 CHAPTER 12 Cutting through attributes, properties, and CSS
 document.getElementById('testForm')
 .appendChild(input);

 input.type = 'hidden';
 assert(input.type == 'hidden',
 'Input type changed to hidden');

 };
</script>

In this test, we create a new <input> element B, give it a type of text, assert that the
assignment was successful c, and insert the new element into the DOM d. After inser-
tion, we change the type to hidden and assert that the change took place e.

 In all modern browsers but IE, the tests pass without a problem. In IE 8 and ear-
lier, however, an exception is thrown at the assignment attempt, and the second test
never executes.

 Although there’s no easy workaround, there are two stopgap measures we can take:

■ Rather than try to change the type, create a new <input> element, copy over all
properties and attributes, and replace the original element with the newly cre-
ated element. This solution seems easy enough, but it has problems. First, it’s
impossible to know if the element has had any event handlers established upon
it using the DOM level 2 methods unless we’ve been tracking them ourselves.
Second, any references to the original element become invalid.

■ In any API you create to effect changes to properties or attributes, simply reject
any attempts to change the type value.

Neither of these options is completely satisfying.
 jQuery employs the second approach, throwing an informative exception when any

attempt is made to change the type attribute if the element has already been inserted
into the document. Obviously this is a compromise “solution,” but at least the user expe-
rience is consistent across all platforms. Thankfully, this issue has been addressed in IE 9.

 Let’s look at yet another annoyance that the browsers bedevil us with, again within
the realm of form elements.

12.2.5 The tab index problem

Determining the tab index of an element is another weird problem that the browsers
throw at us, and it’s one where there’s little consensus as to how it should work. While
it’s perfectly possible to get the tab index of an element using either the tabIndex
property or the "tabindex" attribute for elements that have them explicitly defined,
the browser returns a value of 0 for the tabIndex property and null for the "tabindex" attri-
bute for elements without an explicit value. This means, of course, that we have no
way of knowing what tab index has been assigned to elements that we didn’t explicitly
set a tab index value upon.

 This is a complex issue, and it’s one that’s especially important in the world of
usability and accessibility.

 The last attribute-related problem we’ll consider isn’t really an attribute issue at all.

Inserts the new input
element into the DOM d

Changes type
after insertion e
Licensed to Maxeta Technologies <account@maxetatech.com>

267Styling attribute headaches
12.2.6 Node names

While this issue isn’t directly related to attributes per se, a number of workarounds
we’ve used in this section have relied upon finding nodes, and it turns out that deter-
mining the name of a node can be slightly tricky.

 Specifically, the case sensitivity of the node name changes depending upon which
type of document you’re examining. If it’s a normal HTML document, the nodeName
property will return the name of the element in all uppercase (for example, HTML or
BODY). But if it’s in an XML or XHTML document, the nodeName will return the name as
specified by the user, which means that it could be lowercase, uppercase, or any com-
bination of either.

 The conventional solution to this hindrance is to normalize the name prior to any
comparison, usually to lowercase. For example, let’s say we want to perform some
operation on only <div> and elements. As we don’t know whether the node
names that we’ll be getting are “div” or “DIV” or even “dIv”, we’d want to normalize
the names as shown in this code:

var all = document.getElementsByTagName("*")[0];

for (var i = 0; i < all.length; i++) {
 var nodeName = all[i].nodeName.toLowerCase();
 if (nodeName === "div" || nodeName === "ul") {
 all[i].className = "found";
 }
}

When we definitively know what type of document our code will be executing within,
we don’t necessarily have to worry about this case sensitivity, but if we’re writing reus-
able code that should run in any environment, it’s best to be prudent and perform
the normalization.

 In this section, we’ve talked about issues with the attributes and properties of ele-
ments, and we even examined a small issue with the style property. But that was just a
tiny glimpse into the heartburn that the browsers have in store for us when it comes to
styling. In the next section, we’ll take a look at the pain points of dealing with CSS
issues in the browsers.

12.3 Styling attribute headaches
As with general attributes, getting and setting styling attributes can be quite the head-
ache. Just like the attributes and properties that we examined in the previous section,
we again have two approaches for handling style values: the attribute value, and the
element property created from it.

 The most commonly used of these is the style element property, which isn’t a
string but an object that holds properties corresponding to the style values specified
in the element markup. In addition to this, we’ll see that there’s an API for accessing
the computed style information of an element, where “computed style” means the
Licensed to Maxeta Technologies <account@maxetatech.com>

268 CHAPTER 12 Cutting through attributes, properties, and CSS

Te
th
co
wa
re
actual styles that will be applied to the element after evaluating all inherited and
applied style information.

 This section will outline the things you should know about dealing with styles in
the browsers. Let’s start with a look at where style information is recorded.

12.3.1 Where are my styles?

The style information located on the style property of a DOM element is initially set
from the value specified for the style attribute in the element markup. For example,
style="color:red;" will result in that style information being placed into the style
object. During page execution, script can set or modify values in the style object, and
these changes will actively affect the display of the element.

 Many script authors are disappointed to find that no values from on-page <style>
elements or external style sheets are available in the element’s style object. But we
won’t stay disappointed for long—we’ll shortly see a way to obtain such information.

 But for now, let’s see how the style property gets its values. Examine the follow-
ing code.

<style>
 div { font-size: 1.8em; border: 0 solid gold; }
</style>

<div style="color:#000;" title="Ninja power!">
 忍者パワー

</div>

<script>
 window.onload = function(){

 var div = document.getElementsByTagName("div")[0];

 assert(div.style.color == 'rgb(0, 0, 0)' ||
 div.style.color == '#000',
 'color was recorded');

 assert(div.style.fontSize == '1.8em',
 'fontSize was recorded');

 assert(div.style.boderWidth == '0',
 'borderWidth was recorded');

 div.style.borderWidth = "4px";

 assert(div.style.borderWidth == '4px',
 'borderWidth was replaced');

 };
</script>

In this example, we set up a <style> element to establish an internal style sheet B
whose values will be applied to the elements on the page. The style sheet specifies that
all <div> elements will appear in a font size that’s 1.8 times bigger than the default,

Listing 12.7 Examining the style property

Declares an in-page style
sheet that applies font size
and border information

 b

This test element should receive
multiple styles from various

places, including its own style
attribute and the style sheet.

 c

sts that
e inlined
lor style
s
corded

 d

Tests that the inherited font
size style was recorded e

Tests that the inherited border
width style was recorded f

Replaces the
border width style
 g

Tests it h
Licensed to Maxeta Technologies <account@maxetatech.com>

269Styling attribute headaches
with a solid gold border of 0 width. This means that any elements to which this is
applied will possess a border; it just won’t be visible because it has a width of 0.

 Then we create a <div> element with an inlined style attribute that colors the text
of the element black c.

 We then begin the testing. After obtaining a reference to the <div> element, we
test that the style attribute received a color property that represents the color
assigned to the element d. Note that even though the color was specified as #000 in
the inline style, it’s normalized to RGB notation when set in the style property in
most browsers (so we check both formats). Looking ahead to figure 12.3, we see that
this test passes.

WARNING The color normalization isn’t always consistent across browsers or
even within a specific browser. Most colors will be normalized to RGB nota-
tion, but some browsers will leave colors specified as named colors (black,
for example).

Then we naively test that the font-size styling and the border width specified in the
inline style sheet have been recorded in the style object e f. But even though we
can see in figure 12.3 that the font-size style has been applied to the element, the test
fails. This is because the style object doesn’t reflect any style information inherited
from CSS style sheets.

 Moving on, we use an assignment to change the value of the borderWidth property
in the style object to 4 pixels wide g and test that the change was applied h. We can
see in figure 12.3 that the test passes and that the previously invisible border now has
been applied to the element. This assignment causes a borderWidth property to appear
in the style property of the element, as proven by the test h.

 It should be noted that any values in an element’s style property will take prece-
dence over anything inherited by a style sheet (even if the style sheet rule uses the
!important annotation).

 One thing that you may have noted in listing 12.7 is that CSS specifies the font size
property as font-size, but in script we referenced it as fontSize. Why is that?

Figure 12.3 Tests show that inline
and assigned styles are recorded, but
inherited styles aren’t.
Licensed to Maxeta Technologies <account@maxetatech.com>

270 CHAPTER 12 Cutting through attributes, properties, and CSS
12.3.2 Style property naming

With CSS attributes there are relatively few cross-browser difficulties when it comes to
accessing the values provided by the browser. But differences between how CSS names
styles and how we access those in script do exist, and there are some style names that
differ across browsers.

 CSS attributes that span more than one word separate the words with a hyphen;
examples are font-weight, font-size, and background-color. You may recall that prop-
erty names in JavaScript can contain a hyphen, but including a hyphen prevents the
property from being accessed via the dot operator.

 Consider this example:

var color = element.style['font-size'];

The preceding would be perfectly valid. But the following wouldn’t:

var color = element.style.font-size;

The JavaScript parser would see the hyphen as a subtraction operator and nobody
would be happy with the outcome. Rather than forcing page developers to always use
the general form for property access, multiword CSS style names are converted to
camel case when used as a property name. As a result, font-size becomes fontSize and
background-color becomes backgroundColor.

 We can either remember to do this, or we could write a simple API to set or get styles
for us that automatically handles the camel casing, as shown in the following listing.

<div style="color:red;font-size:10px;background-color:#eee;"></div>

<script type="text/javascript">
 function style(element,name,value){
 name = name.replace(/-([a-z])/ig,
 function(all,letter){
 return letter.toUpperCase();
 });

 if (typeof value !== 'undefined') {
 element.style[name] = value;
 }

 return element.style[name];
 }

 window.onload = function(){

 var div = document.getElementsByTagName('div')[0];

 assert(true,style(div,'color'));
 assert(true,style(div,'font-size'));
 assert(true,style(div,'background-color'));

 };
</script>

Listing 12.8 A simple method for accessing styles

Defines the
style function

Converts name
to camel case

Sets value if
provided

Returns value
Licensed to Maxeta Technologies <account@maxetatech.com>

271Styling attribute headaches
With the exception of the conversion of the name parameter to camel case, this func-
tion operates much like the attr() function that we developed in listing 12.3, so we
won’t belabor its operation.

 If the regex-driven conversion operation has you scratching your head, you
might want to review the material in chapter 7. Also note that despite the inclusion
of a number of assert() calls, we haven’t really performed any testing of the func-
tion—we used the assert as a lazy way of displaying the output in the page, as shown
in figure 12.4.

 As an exercise, write a series of asserts that thoroughly test this new function.
 Earlier we mentioned that there are a number of “problem” style properties that

are treated differently across browsers. Let’s take a gander at one of them.

12.3.3 The float style property

One major naming headache in the area of style attributes is the manner in which the
float attribute is handled. This property needs to be specially handled because
the name float is a reserved keyword in JavaScript. The browsers need to provide an
alternative name.

 As has frequently happened in such cases, the standards-compliant browsers went one
way, and Internet Explorer went another. Nearly all browsers chose to use the name css-
Float as the alternative name, whereas Internet Explorer chose styleFloat. Sigh.

 Using the translation capability from listing 12.3 as inspiration, see if you can mod-
ify the style() function of listing 12.8 to accommodate this difference.

 Earlier in this section, we saw how color values can be changed from one notation to
another when they’re added as a style property. Let’s explore another such situation.

12.3.4 Conversion of pixel values

An important point to consider when setting style values is the assignment of numeric
values that represent pixels. When specifying pixel values in deprecated attributes,
such as the height attribute of the tag, we’re used to specifying a number and let-
ting the browser deal with the units. When assigning pixel values to style properties,
this approach can get us into a lot of trouble.

Figure 12.4 Putting our style()
function to the test shows how it can
automatically divine the property
name, given a CSS name.
Licensed to Maxeta Technologies <account@maxetatech.com>

272 CHAPTER 12 Cutting through attributes, properties, and CSS
 When setting a numeric value for a style property, we must specify the units in
order for it to work reliably across all browsers. For example, let’s say that we want to
set the height style value of an element to 10 pixels. Either of the following is a safe
way to do this across the browsers:

element.style.height = "10px";
element.style.height = 10 + "px";

The following isn’t safe across browsers:

element.style.height = 10;

You might think it’d be easy to add a little logic to our style() function of listing 12.8
to just tack a “px” to the end of numeric value coming into the function. But not so
fast! Not all numeric values represent pixels! There are a number of style properties
that take numeric values that don’t represent a pixel dimension:

■ z-index
■ font-weight
■ opacity
■ zoom
■ line-height

For these (and any others you can think of), go ahead and extend the function of list-
ing 12.8 to automatically handle non-pixel values.

 Also, when attempting to read a pixel value out of a style attribute, the parseFloat
method should be used to make sure that you get the intended value under all
circumstances.

 Now let’s take a look at a set of important style properties that can be tough to handle.

12.3.5 Measuring heights and widths

Style properties such as height and width pose a special problem, because their values
default to auto when not specified, so that the element sizes itself according to its con-
tents. As a result, we can’t use the height and width style properties to get accurate val-
ues unless explicit values were provided in the attribute string.

 Thankfully, the offsetHeight and offsetWidth properties provide just that: a fairly
reliable means to access the actual height and width of an element. But be aware that
the values assigned to these two properties include the padding of the element. This
information is usually exactly what we want if we’re attempting to position one ele-
ment over another. But sometimes we may want to obtain information about the ele-
ment’s dimensions with and without borders and padding.

 Something to watch out for, however, is that in highly interactive sites it’s likely that
elements may spend some of their time in a non-displayed state (with the display style
being set to none), and when an element isn’t part of the display, it has no dimensions.
Any attempt to fetch the offsetWidth or offsetHeight properties of a non-displayed ele-
ment will result in a value of 0.
Licensed to Maxeta Technologies <account@maxetatech.com>

273Styling attribute headaches
 For such hidden elements, if we wish to obtain its non-hidden dimensions, we can
employ a trick and momentarily unhide the element, grab the values, and hide it
again. Of course, we want to do so in such a way that there’s no visible clue that this is
going on behind the scenes. How can we make a hidden element not hidden without
making it visible?

 Employing our ninja skills, we can do it! Here’s how:

1 Change the display property to block.
2 Set visibility to hidden.
3 Set position to absolute.
4 Grab the dimension values.
5 Restore the changed properties.

Changing the display property to block allows us to grab the actual values of off-
setHeight and offsetWidth, but it will make the element part of the display and there-
fore visible. To make it invisible, we’ll set the visibility property to hidden. But
(there’s always another “but”) that will leave a big hole where the element is posi-
tioned, so we also set the position property to absolute to take the element out of the
normal display flow.

 All that sounds more complicated than the actual implementation, which is shown
in the next listing.

<div>
 Lorem ipsum dolor sit amet, consectetur adipiscing elit.
 Suspendisse congue facilisis dignissim. Fusce sodales,
 odio commodo accumsan commodo, lacus odio aliquet purus,

 <img src="../images/ninja-with-shuriken.png"
 id="withShuriken" style="display:none" />
 vel rhoncus elit sem quis libero. Cum sociis natoque
 penatibus et magnis dis parturient montes, nascetur
 ridiculus mus. In hac habitasse platea dictumst. Donec
 adipiscing urna ut nibh vestibulum vitae mattis leo
 rutrum. Etiam a lectus ut nunc mattis laoreet at
 placerat nulla. Aenean tincidunt lorem eu dolor commodo
 ornare.
</div>

<script type="text/javascript">

 (function(){

 var PROPERTIES = {
 position: "absolute",
 visibility: "hidden",
 display: "block"
 };

 window.getDimensions = function(element) {

Listing 12.9 Grabbing the dimensions of hidden elements

Creates a
private scope b

Defines target
properties c

Creates the new
function d
Licensed to Maxeta Technologies <account@maxetatech.com>

274 CHAPTER 12 Cutting through attributes, properties, and CSS
 var previous = {};
 for (var key in PROPERTIES) {
 previous[key] = element.style[key];
 element.style[key] = PROPERTIES[key];
 }

 var result = {
 width: element.offsetWidth,
 height: element.offsetHeight
 };

 for (key in PROPERTIES) {
 element.style[key] = previous[key];
 }
 return result;
 };

 })();

 window.onload = function() {

 setTimeout(function(){

 var withPole = document.getElementById('withPole'),
 withShuriken = document.getElementById('withShuriken');

 assert(withPole.offsetWidth == 41,
 "Pole image width fetched; actual: " +
 withPole.offsetWidth + ", expected: 41");
 assert(withPole.offsetHeight == 48,
 "Pole image height fetched: actual: " +
 withPole.offsetHeight + ", expected 48");

 assert(withShuriken.offsetWidth == 36,
 "Shuriken image width fetched; actual: " +
 withShuriken.offsetWidth + ", expected: 36");
 assert(withShuriken.offsetHeight == 48,
 "Shuriken image height fetched: actual: " +
 withShuriken.offsetHeight + ", expected 48");

 var dimensions = getDimensions(withShuriken);

 assert(dimensions.width == 36,
 "Shuriken image width fetched; actual: " +
 dimensions.width + ", expected: 36");
 assert(dimensions.height == 48,
 "Shuriken image height fetched: actual: " +
 dimensions.height + ", expected 48");

 },3000);

 }
</script>

That’s rather a long listing, but most of it is test code; the actual implementation of
the new dimension-fetching function spans only a dozen or so lines of code.

 Let’s take a look at it piece by piece. First, we set up some elements to test: a <div>
element containing a bunch of text with two images embedded within it, left-justified

Remembers
settings e

Replaces
settings f

Fetches
dimensions g

Restores
settings h

Tests visible
element i

Tests hidden
element j

Uses new
function

 1)

Retests hidden
element 1!
Licensed to Maxeta Technologies <account@maxetatech.com>

275Styling attribute headaches
by styles in an external style sheet. These image elements will be the subjects of our
tests; one is visible, and one is hidden.

 Prior to running any script, the elements appear as shown in figure 12.5. If the sec-
ond image were not hidden, it would appear as a second ninja just to the right of the
visible one.

 Then we set about defining our new function. We’re going to use a hash for some
important information, so we repeat the trick of listing 12.3 and enclose the local vari-
able and the function definition in an immediate function B to create a local scope
and closure. The local hash to contain the properties we want to muck around with is
defined c and populated with the three properties and their replacement values.

 Our new dimension-fetching function is then declared d, accepting the element
that’s to be measured. Within that function, we first create a hash named previous e in
which we’ll record the previous values of the style properties that we’ll be stomping on,
so that we can restore them later. Looping over the replacement properties, we then
record each of their previous values and replace those values with the new ones f.

 That accomplished, we’re ready to measure the element, which has now been
made part of the display layout, invisible, and absolutely positioned. The dimensions
are recorded in a hash assigned to local variable result g.

 Now that we’ve pilfered what we came for, we erase our tracks by restoring the orig-
inal values of the style properties that we modified h, and we return the results as a
hash containing width and height properties.

 All well and good, but does it work? Let’s find out.
 In a load handler, we perform the tests in a callback to a 3-second timer. Why, you

ask? The load handler ensures we don’t perform the test until we know that the DOM
has been built, and the timer enables us to watch the display while the test is running,
to make sure there are no display glitches while we fiddle with the properties of the
hidden element. After all, if the display is disturbed in any way when we run our func-
tion, it’s a bust.

 In the timer callback, we first get a reference to our test subjects (the two images)
and assert that we can obtain the dimensions of the visible image using the offset
properties i. This test passes, which we can see if we peek ahead to figure 12.6.

Figure 12.5 We’ll use two images—
one visible, one hidden—for testing
the fetching of dimensions of
hidden elements.
Licensed to Maxeta Technologies <account@maxetatech.com>

276 CHAPTER 12 Cutting through attributes, properties, and CSS
Then we make the same test on the hidden element j, incorrectly assuming that the
offset properties will work with a hidden image. Not surprisingly, because we’ve
already acknowledged that this won’t work, the test fails.

 Next, we call our new function on the hidden image 1), and then retest with those
results 1!. Success! Our test passes, as shown in figure 12.6.

 If we watch the display of the page while the test is running—remember, we delay
running the test until 3 seconds after the DOM is loaded—we can see that the display
isn’t perturbed in any way by our behind-the-scenes adjustments of the hidden ele-
ment’s properties.

TIP Checking the offsetWidth and offsetHeight style properties for zeroes
can serve as an incredibly efficient means of determining the visibility of
an element.

The dimension style properties aren’t the only ones that pose a challenge. Let’s
explore the nuances of dealing with the opacity property.

12.3.6 Seeing through opacity

The opacity style property is another special case that needs to be handled differ-
ently across browsers. All modern browsers, including Internet Explorer 9, natively
support the opacity property, but versions of IE prior to IE 9 use their proprietary
alpha filter notation.

 Because of this, we frequently see opacity styles specified as follows in a style sheet
(or directly in the style attribute):

opacity: 0.5;
filter: alpha(opacity=50);

The standard style uses a value from 0.0 to 1.0 to specify the opacity of an element,
while the alpha filter uses an integer percentage from 0 to 100. The preceding rules
both specify an opacity value of 50 percent.

Figure 12.6 By temporarily
adjusting the style properties of
hidden elements, we can
successfully fetch their dimensions.
Licensed to Maxeta Technologies <account@maxetatech.com>

277Styling attribute headaches
 Let’s say that we have an element defined with both styles as follows:

<div style="opacity:0.5;filter:alpha(opacity=50);">Hello</div>

When trying to fetch these values, the problem we’re faced with is twofold:

■ There are many different types of filters beyond alpha, such as transformations,
so we have to deal with many filter types and can’t just assume that a filter always
specifies opacity.

■ Even though IE 8 and earlier versions don’t support opacity, the value specified
for opacity will be returned when referencing the element’s style.opacity prop-
erty, even if it’s completely ignored by the browser.

This latter point makes it hard for our code to determine if the browser has native
support for opacity or not. But once again, we can focus our ninja powers on the prob-
lem and thumb our noses at the browsers that stubbornly try to foil us.

 As it turns out, browsers that support opacity will always normalize an opacity value
less than 1.0 with a leading 0. For example, if the opacity is specified as opacity: .5, a
browser with native opacity support will return the value as 0.5, whereas nonsupport-
ing browsers will simply leave the value in its original form of .5.

 That means we can use feature simulation (remember that from chapter 11?) to
determine if a browser supports opacity natively or not. Consider the following code.

<script type="text/javascript">

 var div = document.createElement("div");
 div.setAttribute('style','opacity:.5');
 var OPACITY_SUPPORTED = div.style.opacity === "0.5";

 assert(OPACITY_SUPPORTED,
 "Opacity is supported.");

</script>

In this example, we define an image element with an opacity specified as .5. We won’t
be using this element in the code; it’s just there to provide us with a visual indication
of whether the opacity value is honored by the browser in use or not.

 The meat of the test follows, where we create an unattached element B, which we
augment with a style attribute with an opacity value of .5. We then record whether
opacity is natively supported by reading the value back and checking if it’s fetched as
the original value (not supported), or the modified value of 0.5 (supported).

 Finally, we assert the support variable, which causes the test to pass on supporting
browsers and fail on nonsupporting browsers.

 Figure 12.7 shows the result of loading this test c into Chrome 17 (top) and Inter-
net Explorer 7 (bottom).

Listing 12.10 Determining if a browser supports opacity or not

Checks for
support b

Displays
result c
Licensed to Maxeta Technologies <account@maxetatech.com>

278 CHAPTER 12 Cutting through attributes, properties, and CSS
Using this ninja knowledge, see if you can create a getOpacity(element) function, along
the lines of the getDimensions() function of listing 12.9, that returns the opacity value for
the passed element as a value between 0.0 and 1.0 regardless of the platform.

TIP In creating this function, a regular expression would be handy for find-
ing the value of the alpha opacity filter, and the window.parseFloat() method
will be your best friend. Also, return 1.0 as a failure fallback because that’s the
default for opacity values.

Let’s now turn our eyes to yet another set of problematic style properties that cause us
some pain because their values can take on many equivalent forms.

Figure 12.7 Visual clues as well as our explicit test shows that opacity is supported on Chrome but not
versions of IE prior to IE 9.
Licensed to Maxeta Technologies <account@maxetatech.com>

279Styling attribute headaches
12.3.7 Riding the color wheel

We’ve already seen in this chapter that color values can be expressed in a variety of
formats. This makes handling color values from the style property somewhat tricky.
We’re somewhat at the mercy of whatever formats that the page author chose, and
even more so on any transformations that the browsers apply to those formats.

 When we’re accessing them via the different computed style methods, there’s little
consistency in the formats that the various browsers will return. Because of this, any
attempts to gain access to the useful parts of a color—its red, blue, and green color
channels, and, as we’ll see, an optional alpha channel—involve a great deal of legwork.

 There are numerous formats in which colors can be represented in modern brows-
ers. They’re summarized in table 12.3.

As can be seen from the information in table 12.3, the page author has a lot of flexibil-
ity in expressing color information, which wouldn’t be much of an issue for us if the
browsers would transform the color values placed into style into a consistent format.
But they don’t, so we have a problem.

 Let’s write a test to see what the browsers do to torment us. Examine the follow-
ing code.

<div style="background-color:darkslateblue"> </div>
<div style="background-color:#369"> </div>
<div style="background-color:#123456"> </div>

Table 12.3 CSS3 color formats

Format Description

keyword Any of the recognized HTML color keywords (red, green, maroon, and so on),
extended SVG color keywords (bisque, chocolate, darkred, and so on), or the
keyword transparent (which is equivalent to rgba(0,0,0,0)—see below).

#rgb Short hexadecimal RGB (red, green, blue) color values, where each portion is a
value from 0 to f.

#rrggbb Long hexadecimal RGB (red, green, blue) color values, where each portion is a
value from 00 to ff.

rgb(r,g,b) RGB notation where each value is a decimal value from 0 to 255, or 0% to 100%.

rgba(r,g,b,a) RGB notation with the addition of an alpha channel. The alpha value ranges from
0.0 (transparent) to 1.0 (fully opaque).

hsl(h,s,l) HSL notation where the values represent hue, saturation, and lightness. The hue
value ranges from 0 to 360 (the angle on the color wheel), and saturation and
lightness range from 0% to 100%.

hsla(h,s,l) HSL notation with the addition of the alpha channel.

Listing 12.11 Determining how a browser formats color information

Creates colored
elements b
Licensed to Maxeta Technologies <account@maxetatech.com>

280 CHAPTER 12 Cutting through attributes, properties, and CSS
<div style="background-color:rg6b(44,88,168)"> </div>
<div style="background-color:rgba(44,88,166,0.5)"> </div>
<div style="background-color:hsl(120,100%,25%)"> </div>
<div style="background-color:hsla(120,100%,25%,0.5)"> </div>

<script type="text/javascript">

 var divs = document.getElementsByTagName('div');

 for (var n = 0; n < divs.length; n++) {
 assert(true,divs[n].style.backgroundColor);
 }

</script>

We start off by creating a series of <div> elements with background color style proper-
ties expressed in seven different formats B. We then collect references to those ele-
ments c and iterate over the collection, displaying the value stored in the
style.backgroundColor property d.

 This will show us how the browser within which the test is executed formats the color
info for the different methods of specifying it. Looking at the displays in figure 12.8, we
can see that the stored formats are all across the board.

 Because there are so many color information differences across browsers, we’re
not going to take the space required to develop a getColor(element,property) method;
we’ll leave it for you to do so. You have all the tools you need, so it’s more of a lengthy
task than a difficult one.

 The method should accept an element and a color property (such as color or back-
ground-color) and return a color keyword, a hash containing red, green, blue, and alpha
properties, or a hash containing hue, lightness, saturation, and alpha properties.
Given your knowledge of regular expressions from chapter 7, and the examples of the
getDimensions() and getOpacity() methods that we developed earlier in this chapter,
you should be well armed to tackle the task.

CHALLENGE If you really want a challenge, also convert any HSL values to RGB
using the formula found at http://en.wikipedia.org/wiki/HSL_and_HSV#
Converting_to_RGB.

Obviously, handling colors isn’t a problem that hasn’t already been tackled before.
You may want to check out the jQuery Color plugin with code written by Blair Mitchel-
more at http://plugins.jquery.com/project/color.

 So far, we’ve covered most of the issues that we need to worry about when it comes
to handling the style property of an element. But as we pointed out, that property
won’t include any style information that an element inherits from style sheets that
are in scope for the element. There are many times that it’d be handy to know the
full computed style that’s been applied to an element, so let’s see if there’s a way to
obtain that.

Collects the
elements c

Displays
color info d
Licensed to Maxeta Technologies <account@maxetatech.com>

http://en.wikipedia.org/wiki/HSL_and_HSV# Converting_to_RGB
http://en.wikipedia.org/wiki/HSL_and_HSV# Converting_to_RGB
http://plugins.jquery.com/project/color

281Styling attribute headaches
WebKit browsers (Chrome, Safari,

OmniWeb, etc) normalize colors to

rgb and rgba formats.

Internet Explorer 8 and earlier leave the

the HSL formats at all

Firefox leaves color names be, but

normalizes everything else to rgb

and rgba formats

Internet Explorer 9 pretty much

leaves all formats as specified by

the developer

Figure 12.8 The different browser platforms deal with different color formats quite differently!
Licensed to Maxeta Technologies <account@maxetatech.com>

282 CHAPTER 12 Cutting through attributes, properties, and CSS
12.4 Fetching computed styles
At any point in time, the computed style of an element is a combination of all the styles
applied to it via style sheets, the element’s style attribute, and any manipulations of
the style property by script.

 The standard API specified by the W3C, implemented by all modern browsers
(including Internet Explorer 9 but not earlier versions), is the window.getComputed-
Style() method. This method accepts an element whose styles are to be computed
and returns an interface through which property queries can be made. The returned
interface provides a method named getPropertyValue() for retrieving the computed
style of a specific style property.

 Unlike the properties of an element’s style object, the getPropertyValue() method
accepts CSS property names (such as font-size and background-color) rather than the
camel-cased versions of those names.

 Versions of Internet Explorer prior to version 9 have a proprietary technique for
accessing the computed style of an element: a property named currentStyle is
attached to all elements, and it behaves much like the style property except that the
information provided is the live computed style information.

 That gives us enough information to write a fetchComputedStyle() method that will
get the computed value of any style property for an element.

 Here’s something to think about: why didn’t we name the function getComputed-
Property()?

 The following listing implements our computed styles function. It uses the stan-
dard means when available and falls back to the proprietary method if not.

<style type="text/css">
 div {
 background-color: #ffc; display: inline; font-size: 1.8em;
 border: 1px solid crimson; color: green;
 }
</style>

<div style="color:crimson;" id="testSubject" title="Ninja power!">
 忍者パワー

</div>

<script type="text/javascript">

 function fetchComputedStyle(element,property) {

 if (window.getComputedStyle) {

 var computedStyles = window.getComputedStyle(element);

 if (computedStyles) {
 property = property.replace(/([A-Z])/g,'-$1').toLowerCase();
 return computedStyles.getPropertyValue(property);
 }
 }

Listing 12.12 Fetching computed style values

Defines a
style sheet b

Creates
the test
subject

 c

Defines the
new function d

Gets the
interface e

Fetches
style
value

 f
Licensed to Maxeta Technologies <account@maxetatech.com>

283Fetching computed styles
 else if (element.currentStyle) {
 property = property.replace(
 /-([a-z])/ig,
 function(all,letter){ return letter.toUpperCase(); });
 return element.currentStyle[property];
 }
 }

 window.onload = function(){

 var div = document.getElementsByTagName("div")[0];

 assert(true,
 "background-color: " +
 fetchComputedStyle(div,'background-color'));
 assert(true,
 "display: " +
 fetchComputedStyle(div,'display'));
 assert(true,
 "font-size: " +
 fetchComputedStyle(div,'fontSize'));
 assert(true,
 "color: " +
 fetchComputedStyle(div,'color'));
 assert(true,
 "border-top-color: " +
 fetchComputedStyle(div,'borderTopColor'));
 assert(true,
 "border-top-width: " +
 fetchComputedStyle(div,'border-top-width'));

 };

</script>

In order to test the function that we’ll be creating, we set up an element that specifies
style information in its markup c and a style sheet that provides style rules that will be
applied to the element B. It’s our expectation that the computed styles will be the
result of applying both the immediate and the applied styles to the element.

 We then define our new function, which accepts an element and the style property
that we wish to find the computed value for d. And to be especially friendly (after all
we’re ninjas—making things easier for those using our code is part of the job), we’ll
allow multiword property names to be specified in either format: dashed or camel-
cased. In other words, we’ll accept both backgroundColor and background-color. We’ll
see how we can accomplish that in just a little bit.

 The first thing we want to do is check if the standard means is available—which will
be true in all cases but older versions of IE—and if so, proceed to obtain the com-
puted style interface, which we store in a variable for later reference e. We want to do
things this way because we don’t know how expensive making this call may be, and it’s
likely best to avoid repeating it needlessly.

 If that succeeds (and we can’t think of any reason why it wouldn’t, but it frequently
pays to be cautious), we call the getPropertyValue() method of the interface to get the
computed style value f. But first we adjust the name of the property to accommodate

Uses
proprietary
means

 g

Displays
results h
Licensed to Maxeta Technologies <account@maxetatech.com>

284 CHAPTER 12 Cutting through attributes, properties, and CSS
either the camel-cased or dashed version of the property name. The getPropertyValue()
method expects the dashed version, so we use the String’s replace() method, with a sim-
ple but clever regular expression, to insert a hyphen before every uppercase character
and then lowercase the whole thing. (Bet that was easier than you thought it would be.)

 If we detect that the standard method isn’t available, we test to see if the IE-
proprietary currentStyle property is available, and if so, we transform the property
name by replacing all instances of a lowercase character preceded with a hyphen with
the uppercase equivalent (to convert any dashed property names to camel case) and
return the value of that property g.

 In all cases, if anything goes awry, we simply return with no value.
 To test the function, we make a number of calls to the function, passing various

style names in various formats, and display the results h, as shown in figure 12.9.
 Note that the styles are fetched regardless of whether they were explicitly declared

on the element or inherited from the style sheet. Also note that the color property,
specified in both the style sheet and directly on the element, returns the explicit
value. Styles specified by an element’s style attribute always take precedence over
inherited styles, even if marked !important.

 There’s one more topic that we need to be aware of when dealing with style properties:
amalgam properties. CSS allows us to use a shortcut notation for the amalgam of properties
such as the border- properties. Rather than forcing us to specify colors, widths, and border
styles individually and for all four borders, we can use a rule such as this:

border: 1px solid crimson;

We used this exact rule in listing 12.12. This saves us a lot of typing, but we need to be
aware that when we retrieve the properties, we need to fetch the low-level individual
properties. We can’t fetch border, but we can fetch styles such as border-top-color and
border-top-width, just as we did in our example.

Figure 12.9
Computed styles
include all styles
specified on the
element as well as
those inherited from
style sheets.
Licensed to Maxeta Technologies <account@maxetatech.com>

285Summary
 It can be a bit of a hassle, especially when all four styles are given the same values,
but that’s the hand we’ve been dealt.

12.5 Summary
When it comes to cross-browser compatibility issues, getting and setting DOM attri-
butes, properties, and styles may not be the worst area of JavaScript development for
the browsers, but it certainly has its fair share of issues. Thankfully, we’ve learned that
these issues can be handled in ways that are cross-browser compliant without resorting
to browser detection.

 Here are the important points to take away from this chapter:

■ Attribute values are set from the attributes placed on the element markup.
■ When retrieved, the attribute values may represent the same values, but they

may sometimes be formatted differently than specified in the original markup.
■ Properties that represent the attribute values are created on the elements.
■ The keys for these properties may vary from the original attribute name, as well

as across browsers, and the values may be formatted differently from either the
attribute value or original markup.

■ When push comes to shove, we can retrieve the original markup value by diving
into the original attributes nodes in the DOM and getting the value from them.

■ Dealing with the properties is usually more performant than using the DOM
attribute methods.

■ Versions of IE prior to IE 9 don’t allow the type attribute of <input> elements to
be changed once the element is part of the DOM.

■ The style attribute poses some unique challenges and doesn’t contain the com-
puted style for the element.

■ Computed styles can be fetched from the window using a standardized API in
modern browsers, and via a proprietary property on IE 8 and earlier.

In this chapter, we’ve mulled over the problems created by the differing implementa-
tions of how properties and attributes are handled across the browsers, and we found
that there are ample headaches in this area. But perhaps no area in web development
holds more cross-browser problems than the handling of events. In the next chapter,
we’ll tackle that head on.
Licensed to Maxeta Technologies <account@maxetatech.com>

Licensed to Maxeta Technologies <account@maxetatech.com>

Part 4

Master training

If you’ve survived the training up to this point, you can don your ninja garb
and hold your head up high among the users of the JavaScript language.

 If you want even more rigorous training, this part of the book delves deeply
into JavaScript secrets. Not for the faint of heart, the chapters of this section will
cover material in more depth and at a faster clip than the preceding chapters.
You’ll be expected to fill in the blanks and dig into areas with your newly found
knowledge. Be warned: there be dragons here.

 These chapters, written from the point of view of those writing the popular
JavaScript libraries, will give you a glimpse into the decisions and techniques
used to implement some of the knottiest areas of those libraries.

 Chapter 13 focuses on cross-browser event handling, which is probably the
worst of the knotty situations in which the browsers place us.

 In chapter 14, we’ll see how DOM manipulation techniques can be handled.
 Finally, chapter 15 will cover CSS selector engines—a topic from which much

knowledge can be garnered, even if writing such an engine from scratch is not
on your path to enlightenment.

 Strap on your weapons and make sure that your tabis are tightly fitted. This
training will surely put you to the test.

Licensed to Maxeta Technologies <account@maxetatech.com>

Licensed to Maxeta Technologies <account@maxetatech.com>

Surviving events
The management of DOM events should be relatively simple, but, as you may have
guessed by the fact that we’re devoting an entire chapter to it, sadly it’s not.

 Although all browsers provide relatively stable APIs for managing events, they do
so with differing approaches and implementations. And even beyond the chal-
lenges posed by browser differences, the features that are provided by the browsers
are insufficient for most of the tasks that need to be handled by even somewhat
complex applications.

 Because of these shortcomings, JavaScript libraries end up needing to nearly
duplicate the existing browser event-handling APIs. This book doesn’t assume that
you’re writing your own library (it doesn’t not assume that either), but it’s useful to
understand how things like event handling are being handled by any library you
might choose to use, and it’s helpful to know what secrets went into creating their
implementations in the first place.

This chapter covers
■ Why events are such an issue
■ Techniques for binding and unbinding events
■ Triggering events
■ Using custom events
■ Event bubbling and delegation
289

Licensed to Maxeta Technologies <account@maxetatech.com>

290 CHAPTER 13 Surviving events
 Everyone who’s made it this far into the book is likely to be familiar with the typical
use of the DOM Level 0 Event Model, in which the event handlers are established via
element properties or attributes. For example, if the code is ignoring the principles of
unobtrusive JavaScript, establishing an event handler for the body element might look
like this:

<body onload="doSomething()">

Or, if the code keeps the behavior (event handling) out of the structural markup, it
could be like the following:

window.onload = doSomething;

Both of these approaches use the DOM Level 0 Event Model.
 But DOM Level 0 events have severe limitations that make them unsuitable for

reusable code, or for pages with any level of complexity. The DOM Level 2 Event
Model provides a more robust API, but its use is problematic as it’s unavailable in IE
browsers prior to IE 9. And, as already pointed out, it lacks a number of features that
we really need.

 We’ll be dismissing the DOM Level 0 Event Model as borderline useless to us, and
we’ll concentrate on DOM Level 2. (In case you’re wondering, there was no event
model introduced with DOM Level 1.)

 This chapter will help us to navigate the event-handling minefield, and explain
how to survive the somewhat hostile environment in which the browsers place us.

13.1 Binding and unbinding event handlers
Under the DOM Level 2 Event Model, we bind and unbind event handlers with the
standard addEventListener() and removeEventListener() methods for modern DOM-
compliant browsers, and the attachEvent() and detachEvent() methods in legacy ver-
sions of Internet Explorer (those prior to IE 9).

 For clarity, we’ll simply refer to the DOM Level 2 Event Model as the DOM Model,
and the proprietary legacy IE model as the IE Model. The former is available in all mod-
ern versions of the “Big Five” browsers; the latter is available in all versions of IE, but
it’s all that’s available to IE versions prior to IE 9.

 For the most part, the two approaches behave similarly, with one glaring excep-
tion: the IE Model doesn’t provide a way to listen for the capturing stage of an event.
Only the bubbling phase of the event-handling process is supported by the IE Model.

NOTE For those unfamiliar with the DOM Level 2 Event Model, events propa-
gate from the event target up to the root of the DOM during the bubble phase, and
then they traverse down the tree back to the target during the capture phase.

Additionally, the IE Model’s implementation doesn’t properly set a context on the
bound handler, resulting in this, within the handler, referring to the global context
(window) instead of the target element. Moreover, the IE Model doesn’t pass the event
information to the handler; it tacks it onto the global context—the window object.
Licensed to Maxeta Technologies <account@maxetatech.com>

291Binding and unbinding event handlers
 This means we need to use browser-specific ways to do just about anything when
dealing with events:

■ Binding a handler
■ Unbinding a handler
■ Obtaining event information
■ Obtaining the event target

It’d hardly make for robust and reusable code to have to perform browser detection
and do things one way or the other at each juncture in event handling, so let’s see
what we can do about creating a common set of APIs that’ll cut through the mayhem.

 Let’s start by seeing how we can address the problems of multiple APIs and the fact
that the context isn’t set by the IE Model (see the following listing).

<script type="text/javascript">

 if (document.addEventListener) {

 this.addEvent = function (elem, type, fn) {
 elem.addEventListener(type, fn, false);
 return fn;
 };

 this.removeEvent = function (elem, type, fn) {
 elem.removeEventListener(type, fn, false);
 };

 }
 else if (document.attachEvent) {

 this.addEvent = function (elem, type, fn) {
 var bound = function () {
 return fn.apply(elem, arguments);
 };
 elem.attachEvent("on" + type, bound);
 return bound;
 };

 this.removeEvent = function (elem, type, fn) {
 elem.detachEvent("on" + type, fn);
 };

 }

</script>

The preceding code adds two methods to the global context: addEvent() and
removeEvent(), with implementations suited to the environment in which the script is
executing. If the DOM Model is present, it’s used; if not, and the IE Model is present,
it’s used. (No methods are created if neither model is present.)

 The implementation is mostly straightforward. After checking whether the DOM
Model is defined B, we define thin wrappers around the standard DOM methods: one
for binding event handlers c and one for unbinding handlers d.

Listing 13.1 Providing proper context when binding event handlers

Checks for the
DOM Model b

Creates a bind
function using
DOM Model

 c

Creates an unbind
function using DOM
Model

 d

Checks for
the IE Model e

Creates a bind
function using IE
Model

 f

Creates an unbind
function using IE
Model

 g
Licensed to Maxeta Technologies <account@maxetatech.com>

292 CHAPTER 13 Surviving events
 Note that our add function returns the established handler as its value (the signifi-
cance of this will be discussed in just a few moments) and passes the value false as the
third parameter to the DOM event API methods. This identifies the handlers as bubble
handlers; because they’re intended for cross-browser environments, our functions
don’t support the capture phase.

 If the DOM Model isn’t present, we then check to see if the IE Model is defined e,
and if so we define the two functions using that model.

 The definition of the unbinding function is another straightforward wrapping of
the model function g, but the binding function is another matter f.

 Remember that one of the primary reasons for doing this at all, aside from defin-
ing a uniform API, was to fix the problem of the handler’s context not being set to the
event target. So, in the binding function, instead of simply passing the handler function
(the fn parameter) to the model function, we first wrap it in an anonymous function that
in turn calls the handler but uses the apply() method to force the context to be the
target element of the event. Then we pass that wrapping function to the model func-
tion as the handler. That way, when the wrapped function is triggered by the event,
the handler function will be called with the proper context. As with the other func-
tions, we return the handler as the function value, though this time we return the
wrapper, not the function that was passed in fn.

 Returning the function is important because, in order to unbind the handler later,
we need to pass a reference to the function that was established as the handler accord-
ing to the model function. In this case, that’s the wrapping function (stored in the
bound variable).

 Let’s see how that works with a quick test in the next listing. The test requires user
intervention, so we won’t be using asserts; we’ll simply interact with the page and
observe the results.

addEvent(window, "load", function () {

 var elems = document.getElementsByTagName("div");

 for (var i = 0; i < elems.length; i++) (function (elem) {
 var handler = addEvent(elem, "click", function () {
 this.style.backgroundColor =
 this.style.backgroundColor=='' ? 'green' : '';
 removeEvent(elem, "click", handler);
 });
 })(elems[i]);

});

We want to wait until the DOM is loaded before we run the test, so we use the very API
that we’re testing to establish the rest of the test as a load event handler B. If our
binding function doesn’t work, the test will never even get a chance to run.

 Within the load handler, we fetch references to all <div> elements on the page to
serve as our test subjects c, and we iterate over the resulting collection of elements.

Listing 13.2 Testing the event binding API

Establishes a load handler b

Fetches test
elements c

Establishes
test handlers d

Unbinds
handlers e
Licensed to Maxeta Technologies <account@maxetatech.com>

293Binding and unbinding event handlers
 For each target element, we use addEvent() to establish a click handler for it d,
storing the returned function reference in a variable named handler. We’re doing this
to establish the reference in the closure for the handler, as we’ll be referencing the
handler function within itself. Note that we can’t rely upon callee in this case because
we know that when we’re operating using the IE Model, the returned function won’t
be the same one that we passed in.

 Within the click handler, we reference the target element via this (proving that
the context has been correctly set), determine whether the background color of the
element has been set, and if not, set it to green. If it has been set, we unset it. If we
were to leave things at that, each subsequent click on the element would toggle the
background of the element between green and nothing.

 But we don’t leave it at that. Before the handler exits, it uses our removeEvent()
function and the handler variable bound into the closure to remove the handler e.
Thus, once the handler has been triggered once, it should never trigger again.

 If we add the following elements to our page and ensure that no background is
applied to them via style sheets, we’d expect that clicking on each <div> would turn it
green, and subsequent clicks would not toggle the background:

<div title="Click me">私をクリック </div>
<div title="but only once">一度だけ </div>

Loading the page into the browser and conducting this manual test verifies that our
functions work as expected. The display shown in figure 13.1 depicts the state of the
page when loaded into Chrome, and after the first element has been clicked on multi-
ple times and the second element not at all.

 Figure 13.2 shows the same page loaded into IE8, which doesn’t support the DOM
Model, after the same actions have been taken.

 That’s a good start, but it exhibits some weaknesses. The primary problem is that
because we need to wrap the handler under legacy versions of IE, users of the API
need to carefully record the reference to the handler as returned from the add-
Event() function. Failing to do so will result in being unable to unbind the handler
at a later point.

 Another weakness is that this solution doesn’t address the problem of access to the
event information.

Figure 13.1 This manual test
proves that a uniform API can bind
and unbind events.
Licensed to Maxeta Technologies <account@maxetatech.com>

294 CHAPTER 13 Surviving events
We’ve made improvements, but we’re not where we want to be yet. Can we do better?

13.2 The Event object
As we’ve already pointed out, the IE Model of event handling that we’re forced to
deal with in legacy browsers differs from the DOM Model in a number of ways. One of
these is in the manner that an instance of the Event object is made available to the
handlers. In the DOM Model, it’s passed to the handler as its first parameter; in the IE
Model, it’s fetched from a property named event placed in the global context
(window.event).

 To make matters even worse, the contents of the Event instance are different in the
two models. What’s a ninja to do?

 The only reasonable way to work around this is to create a new object that simulates
the browser’s native event object, normalizing the properties within it to match the DOM
Model. You might wonder why we wouldn’t just modify the existing object, but that’s not
possible because there are many properties within it that can’t be overwritten.

 Another advantage to cloning the event object is that it solves a problem caused by
the fact that the IE Model stores the object in the global context. Once a new event
starts, any previous event object is wiped out. Transferring the event properties to a
new object whose lifetime we control solves any potential issues of this nature.

 Let’s try our hand at a function for event normalization in the next listing.

<script type="text/javascript">

 function fixEvent(event) {

 function returnTrue() { return true; }
 function returnFalse() { return false; }

 if (!event || !event.stopPropagation) {
 var old = event || window.event;

 // Clone the old object so that we can modify the values
 event = {};

Listing 13.3 A function that normalizes the event object instance

Figure 13.2 It also works in legacy versions of IE.

Predefines often-
used functions b

Tests if fixing
up is needed c
Licensed to Maxeta Technologies <account@maxetatech.com>

295The Event object
 for (var prop in old) {
 event[prop] = old[prop];
 }

 // The event occurred on this element
 if (!event.target) {
 event.target = event.srcElement || document;
 }

 // Handle which other element the event is related to
 event.relatedTarget = event.fromElement === event.target ?
 event.toElement :
 event.fromElement;

 // Stop the default browser action
 event.preventDefault = function () {
 event.returnValue = false;
 event.isDefaultPrevented = returnTrue;
 };

 event.isDefaultPrevented = returnFalse;

 // Stop the event from bubbling
 event.stopPropagation = function () {
 event.cancelBubble = true;
 event.isPropagationStopped = returnTrue;
 };

 event.isPropagationStopped = returnFalse;

 // Stop the event from bubbling and executing other handlers
 event.stopImmediatePropagation = function () {
 this.isImmediatePropagationStopped = returnTrue;
 this.stopPropagation();
 };

 event.isImmediatePropagationStopped = returnFalse;

 // Handle mouse position
 if (event.clientX != null) {
 var doc = document.documentElement, body = document.body;

 event.pageX = event.clientX +
 (doc && doc.scrollLeft || body && body.scrollLeft || 0) -
 (doc && doc.clientLeft || body && body.clientLeft || 0);
 event.pageY = event.clientY +
 (doc && doc.scrollTop || body && body.scrollTop || 0) -
 (doc && doc.clientTop || body && body.clientTop || 0);
 }

 // Handle key presses
 event.which = event.charCode || event.keyCode;

 // Fix button for mouse clicks:
 // 0 == left; 1 == middle; 2 == right
 if (event.button != null) {
 event.button = (event.button & 1 ? 0 :
 (event.button & 4 ? 1 :
 (event.button & 2 ? 2 : 0)));

Clones existing
properties d
Licensed to Maxeta Technologies <account@maxetatech.com>

296 CHAPTER 13 Surviving events
 }
 }

 return event;

 }
</script>

Although this is a fairly long listing, most of what it’s doing is straightforward, so we
aren’t going to exhaustively go through it line-by-line, but we’ll take the time to point
out the most important aspects.

 Essentially, the purpose of this function is to take an instance of Event and check to
see if it conforms to the DOM model. If it doesn’t, we’ll do our best to make it do so.
You can read about the DOM Model’s Event definition on the W3C site at http://
www.w3.org/TR/DOM-Level-2-Events/events.html#Events-interface.

 The first thing that we do in our function is to define two functions B. Remember
that JavaScript allows us to do this, and it limits the scope of these functions to their
parent function so that we don’t need to worry about polluting the global namespace.
We’re going to need functions that return either true or false frequently throughout
our fix-up code, so rather than use redundant function literals, we predefine these
two functions: one always returns true, and one always returns false.

 Then we test whether we need to do anything c. If the instance doesn’t exist (we
assume that the event is defined on the global context in this case) or if it exists but the
standard stopPropagation property is missing, we assume that we need to fix things up.

 If we decide that fixing up is needed, we grab a copy of the existing event—either
the one that was passed to us, or the one on the global context—and store it in a vari-
able named old. Otherwise, we just fall through to the end of the function and return
the existing event e.

 If we’re fixing up, we create an empty object to serve as the fixed-up event and
copy all of the existing properties of the old event into this new object d. Then we
proceed to fix things up to handle many of the common discrepancies between the
W3C DOM Event object and the one provided by the IE Model.

 These are a few of the important properties in the DOM Model that are “fixed” in
this process:

■ target—The property denoting the original source of the event. The IE Model
stores this in srcElement.

■ relatedTarget—Comes into use when it’s used on an event that works in conjunc-
tion with another element (such as mouseover or mouseout). The toElement and
fromElement properties are IE’s counterparts.

■ preventDefault—This property, which doesn’t exist in the IE Model, prevents
the default browser action from occurring. In IE, the returnValue property
needs to be set to false.

■ stopPropagation—This property, also absent from the IE Model, stops the event
from bubbling further up the tree. For IE, setting the cancelBubble property to
true will make this happen.

Returns fixed-
up instance e
Licensed to Maxeta Technologies <account@maxetatech.com>

http://www.w3.org/TR/DOM-Level-2-Events/events.html#Events-interface
http://www.w3.org/TR/DOM-Level-2-Events/events.html#Events-interface

297Handler management
■ pageX and pageY—These properties don’t exist in the IE Model. They provide
the position of the mouse relative to the whole document but can be easily
duplicated using other information. clientX/Y provides the position of the
mouse relative to the window, scrollTop/Left gives the scrolled position of the
document, and clientTop/Left gives the offset of the document itself. Combin-
ing these three properties will give us the final pageX/Y values.

■ which—This is equivalent to the key code pressed during a keyboard event. It can
be duplicated by accessing the charCode and keyCode properties in the IE Model.

■ button—This identifies the mouse button clicked by the user on a mouse event.
The IE Model uses a bitmask (1 for left-click, 2 for right-click, 4 for middle-click) so
it needs to be converted to equivalent values for the DOM Model (0, 1, and 2).

Another resource with great information on the DOM Event object and its cross-
browser capabilities is the set of QuirksMode compatibility tables:

■ Event object compatibility—http://www.quirksmode.org/dom/w3c_events.html
■ Mouse position compatibility—http://www.quirksmode.org/dom/w3c_cssom

.html#mousepos

Additionally, issues surrounding the nitty-gritty of keyboard and mouse-event object
properties can be found in the excellent JavaScript Madness guide:

■ Keyboard events—http://unixpapa.com/js/key.html
■ Mouse events—http://unixpapa.com/js/mouse.html

OK, now we have a means to normalize the Event instance. Let’s see what we can do
about gaining a margin of control over the binding process.

13.3 Handler management
For a number of reasons, it would be advantageous to not bind event handlers directly
to elements. If we use an intermediary event handler instead and store all the han-
dlers in a separate object, we can exert a level of control over the handling process.
Among other things, this will give us the ability to do the following:

■ Normalize the context of handlers
■ Fix up the properties of Event objects
■ Handle garbage collection of bound handlers
■ Trigger or remove some handlers with a filter
■ Unbinding all events of a particular type
■ Clone event handlers

We’ll need to have access to the full list of handlers bound to an element in order to
achieve all of these benefits, so it makes a lot of sense to avoid directly binding the
events and to handle the binding ourselves. Let’s take that on.
Licensed to Maxeta Technologies <account@maxetatech.com>

http://www.quirksmode.org/dom/w3c_events.html
http://www.quirksmode.org/dom/w3c_cssom.html#mousepos
http://unixpapa.com/js/key.html
http://unixpapa.com/js/mouse.html
http://www.quirksmode.org/dom/w3c_cssom.html#mousepos

298 CHAPTER 13 Surviving events
13.3.1 Centrally storing associated information

One of the best ways to manage the handlers associated with a DOM element is to give
each element that we’re working with a unique identifier (not to be confused with the
DOM id), and then store all data associated with it in a centralized object. While it
might seem more natural to store the information on each individual element, keep-
ing the data in a central store will help us to avoid potential memory leaks in Internet
Explorer, which is capable of losing memory under certain circumstances. (In IE,
attaching functions to a DOM element that have a closure to a DOM node can cause
memory to fail to be reclaimed after navigating away from a page.)

 Let’s try our hand at centrally storing information to be associated with particular
DOM elements.

<div title="Ninja Power!">忍者パワー !</div>
<div title="Secrets">秘密 </div>

<script type="text/javascript">
 (function () {

 var cache = {},
 guidCounter = 1,
 expando = "data" + (new Date).getTime();

 this.getData = function (elem) {
 var guid = elem[expando];
 if (!guid) {
 guid = elem[expando] = guidCounter++;
 cache[guid] = {};
 }
 return cache[guid];
 };

 this.removeData = function (elem) {
 var guid = elem[expando];
 if (!guid) return;
 delete cache[guid];
 try {
 delete elem[expando];
 }
 catch (e) {
 if (elem.removeAttribute) {
 elem.removeAttribute(expando);
 }
 }
 };

 })();

 var elems = document.getElementsByTagName('div');

 for (var n = 0; n < elems.length; n++) {
 getData(elems[n]).ninja = elems[n].title;
 }

Listing 13.4 Implementing a central object store for DOM element information

Establishes scoped
storage b

Defines the
getData() function

 c

Defines the
removeData() function d

Fetches test
subjects e

Assigns associated
data f
Licensed to Maxeta Technologies <account@maxetatech.com>

299Handler management
 for (var n = 0; n < elems.length; n++) {
 assert(getData(elems[n]).ninja === elems[n].title,
 "Stored data is " + getData(elems[n]).ninja);
 }

 for (var n = 0; n < elems.length; n++) {
 removeData(elems[n]);
 assert(getData(elems[n]).ninja === undefined,
 "Stored data has been destroyed.")
 }

</script>

In this example, we’ve set up two generic functions, getData() and removeData(), to
respectively fetch the data block for a DOM element, and to remove it when it’s no
longer needed.

 We’re going to need some variables, which we don’t want to contaminate the
global scope with, so we do all our setup within an immediate function. This keeps any
variables we declare within the scope of the immediate function, but they’re still avail-
able to our functions via their closures. (We mentioned in chapter 5 that closures
would play a central role in many things that we need to do.)

 Within the immediate function, we set up three variables B:

■ cache—The object in which we’ll store the data we want to associate with elements.
■ guidCounter—A running counter that we’ll use to generate element GUIDs.
■ expando—The property name that we’ll tack onto each element to store its

GUID. We form this name using the current timestamp to help prevent any
potential collisions with user-defined expandos.

Then we define the getData() method c. The first thing that this function does is to
try to fetch any GUID that’s already been assigned to the element by a previous call
to this method. If it’s the first time that this method has been called on this element,
the GUID won’t exist, so we create a new one (bumping the counter by one each time)
and assign it to the element using the property name in expando; we also create a new
empty object associated with the GUID in the cache.

 Regardless of whether the cache data for the element is newly created or not, it’s
returned as the value of the function. Callers of the function are free to add any data
they would like to the cache, as follows:

var elemData = getData(element);
elemData.someName = 213;
elemData.someOtherName = 2058;

Functions are data too, so we could even indirectly associate functions with the element:

elemData.someFunction = function(x){ /* do something */ }

With the getData() function established, we create the removeData() function, with
which we can wipe out all traces of the data in the event that it’s no longer needed d.

Tests that data
was stored g

Tests that data
was destroyed h
Licensed to Maxeta Technologies <account@maxetatech.com>

300 CHAPTER 13 Surviving events
In removeData(), we obtain the GUID for the passed element and short-circuit the func-
tion if there isn’t one; if there isn’t a GUID, the element has not been instrumented by
getData(), or it has already had the data removed.

 Then we remove the associated data block from the cache, and we try to remove
the expando. Under certain circumstances this may fail, in which case we catch the
error and try to remove the attribute created on behalf of the expando.

 This removes all traces of the instrumentation that getData() created: the cached
data block and the expando placed onto the elements.

 That was pretty easy; let’s make sure it works. We set up two <div> elements to use
as test subjects, each with a unique title attribute. We get references to those ele-
ments e and then iterate over them, creating a data element, consisting of the value
of the title attribute for the element, that we name ninja for each element f.

 Then we iterate over the elements again, checking that each one has an associated
data value, with the name of ninja, that contains the same value as its title attribute g.

 Finally, we iterate over the set once again, calling removeData() on each element
and verifying that the data no longer exists h.

 Figure 13.3 shows that all these tests pass.
 These functions can be quite useful beyond the scope of managing event handlers;

by using these functions, we can attach any sort of data to an element. But we created
these functions with the specific use case of associating event-handling information
with elements in mind.

 Let’s now use those functions to create our own set of functions to bind and
unbind event handlers to elements.

13.3.2 Managing event handlers

In order to exert complete control over the event-handling process, we’ll need to cre-
ate our own functions that wrap the binding and unbinding of events. By doing so, we
can present as unified an event-handling model as possible, across all platforms.

 Let’s get to it. We’ll start with binding event handlers.

Figure 13.3 A few simple tests
show that we can store data
associated with an element without
storing it on the element itself.
Licensed to Maxeta Technologies <account@maxetatech.com>

301Handler management
BINDING EVENT HANDLERS

By writing a function to handle binding events, rather than just binding the handlers
directly, we get the opportunity to keep track of the handlers and get our hooks into
the process. We’ll provide a function to establish another function as a handler (bind-
ing), and to remove a function as a handler (unbinding). We’ll even throw in a few
helpful utility functions.

 Let’s start with binding the handlers with an addEvent() function in the next listing.

(function(){

 var nextGuid = 1;

 this.addEvent = function (elem, type, fn) {

 var data = getData(elem);

 if (!data.handlers) data.handlers = {};

 if (!data.handlers[type])
 data.handlers[type] = [];

 if (!fn.guid) fn.guid = nextGuid++;

 data.handlers[type].push(fn);

 if (!data.dispatcher) {
 data.disabled = false;
 data.dispatcher = function (event) {

 if (data.disabled) return;
 event = fixEvent(event);

 var handlers = data.handlers[event.type];
 if (handlers) {
 for (var n = 0; n < handlers.length; n++) {
 handlers[n].call(elem, event);
 }
 }
 };
 }

 if (data.handlers[type].length == 1) {
 if (document.addEventListener) {
 elem.addEventListener(type, data.dispatcher, false);
 }
 else if (document.attachEvent) {
 elem.attachEvent("on" + type, data.dispatcher);
 }
 }

 };

})();

Wow. That seems like there’s a lot going on, but each part is straightforward, taken
piece by piece.

Listing 13.5 A function to bind event handlers with tracking

Gets the associated
data block b

Creates handler
storage c

Creates array
by type d

Marks
instrumented
functions

 e
Adds

handler
to list

 f
Creates
über-handler
(dispatcher)

 g

Calls
registered
handlers

 h

Registers
dispatcher i
Licensed to Maxeta Technologies <account@maxetatech.com>

302 CHAPTER 13 Surviving events
 First of all, because we’re going to need some local storage (not to be confused
with HTML5 storage), we use our usual trick of defining everything within an immedi-
ate function. The storage that we need is a running counter for a GUID value in the
variable nextGuid. These GUID values will serve as unique markers, much like how we
used them in listing 13.4. We’ll see exactly how in just a moment.

 Then we define the addEvent() function, which accepts an element on which the
handler is to be bound, the type of event, and the handler itself.

 The first thing we do, upon entering the function, is to grab the data block associ-
ated with the element B, using the functions that we defined in listing 13.4, and store
that block in the data variable. This is done for two reasons:

■ We’ll be referencing it a few times, so using a variable makes later refer-
ences shorter.

■ There could be overhead in obtaining the data block, so we do it once.

Because we want to exert a high degree of control over the binding (and later, over
the unbinding) process, rather than add the passed handler to the element directly,
we’re going to create our own über-handler that will serve as the actual event handler.
We’ll register the über-handler with the browser, and it will keep track of the bound
handlers so that we can execute them ourselves when appropriate.

 We’ll call this über-handler the dispatcher to distinguish it from the bound handlers
that users of our function will pass in to us. We’ll be creating the dispatcher before
the end of the function, but first we must create the storage needed to keep track
of the bound handlers.

 We’ll use a lot of just-in-time creation of storage, obtaining the storage as we need
it, rather than pre-allocating it all up front. After all, why create an array in which to
store mouseover handlers if we never have any bound?

 We’re going to associate the handlers with their bound element via the element’s
data block (which we’ve conveniently obtained in the data variable), so we test to see if
the data block has a property named handlers, and if it doesn’t, we create it c. Later
invocations of the function on the same element will detect that the object exists and
won’t try to create it subsequently.

 Within this object, we’ll create arrays in which we’ll store references to handlers
that should be executed, one for each event type. But, as we said earlier, we’re going
to smartly allocate them on an as-needed basis, so we test to see if the handlers object
has a property named after the passed-in type, and if not, we create it d. This results
in one array per event type, but only for the types that actually have handlers bound
for them. That’s a wise use of resources.

 Next we want to mark the functions that we’re handling on behalf of the caller of
our function (for reasons we’ll see when we develop the unbinding function), so we
add a guid property to the passed-in function and bump the counter e. Note that
once again we perform a check to make sure we only do this once per function, as a
function can be bound as a handler multiple times if the page author wishes.
Licensed to Maxeta Technologies <account@maxetatech.com>

303Handler management
 At this point, we know that we have a handlers object, and that it contains an array
keeping track of handlers for the passed event type, so we push the passed handler
onto the end of that array f. This is pretty much the only action within this function
that’s guaranteed to execute whenever this function is called.

 Now we’re ready to deal with the dispatcher function. The first time that this func-
tion is called, no such dispatcher will exist. But we only need one, so we’ll check to see
if it exists and create it only when it doesn’t g.

 Within the dispatcher function, which will be the function that gets triggered
whenever a bound event occurs, we check to see if a disabled flag has been set, and we
terminate if so. (We’ll see in a few sections under what circumstances we might want
to disable event dispatching for a time.) Then we call the fixEvent() function that we
created in listing 13.3, and we find and iterate through the array of handlers that were
recorded for the type of event identified in the Event instance. Each of these handlers
is called, supplying the element as the function context and the Event object as its sole
argument h.

 Lastly, we check whether we’ve just created the first handler for this type, and if so,
we establish the delegate as the event handler for the event type, with the browser
using the means appropriate to the browser within which we’re running i.

TIP If we moved the checking clause to within the conditional creation of
the event-handler array earlier in the function d, we could dispense with the
check here. But we ordered the code as we did to make it easier to explain
how it works (creating all of the data constructs prior to creating the delegate
in which the constructs are used). In production code, it would be wise to
move this clause and remove the need for the redundant check.

The final situation we end up with is that the functions passed to our routine are
never established as actual event handlers; rather, they’re stored and invoked by the
delegate when an event occurs, and the real handler is the delegate. This gives us
the opportunity to make sure that the following things always happen regardless
of the platform:

■ The Event instance is fixed up.
■ The function context is set to the target element.
■ The Event instance is passed to the handler as its sole argument.
■ The event handlers will always be executed in the order in which they were bound.

Even Yoda would be proud of the level of control we can exert on the event-handling
process using this approach.

PICKING UP AFTER OURSELVES

We have a method to bind events, so we need one to unbind them. We didn’t directly
bind the handlers, choosing to exert control over the process with the delegate han-
dler, so we can’t rely upon the browser-supplied unbinding functions; we need to sup-
ply our own.
Licensed to Maxeta Technologies <account@maxetatech.com>

304 CHAPTER 13 Surviving events
 In addition to unbinding the bound handlers, we want to make sure that we tidy
up after ourselves carefully. We took great care not to use up needless allocation in the
binding function; it’d be silly to be remiss about reclaiming storage that becomes
unused as a result of unbinding.

 As it turns out, such tidying up will need to be initiated from more than a single
location, so we’ll capture it in its own function, as the following listing shows.

function tidyUp(elem, type) {

 function isEmpty(object) {
 for (var prop in object) {
 return false;
 }
 return true;
 }

 var data = getData(elem);

 if (data.handlers[type].length === 0) {

 delete data.handlers[type];

 if (document.removeEventListener) {
 elem.removeEventListener(type, data.dispatcher, false);
 }
 else if (document.detachEvent) {
 elem.detachEvent("on" + type, data.dispatcher);
 }
 }

 if (isEmpty(data.handlers)) {
 delete data.handlers;
 delete data.dispatcher;
 }

 if (isEmpty(data)) {
 removeData(elem);
 }
}

We create a function named tidyUp() that accepts an element and an event type. The
function will check to see if any handlers for this type are still around, and if not, clean
up as much as possible, releasing any unneeded storage. This is a safe thing to do
because, as we saw in the addEvent() function, if the storage is needed again later, that
function will simply create it as needed.

 We’ll need to check if an object has any properties or not (if it’s empty) in a
number of locations. And because there’s no “isempty” operator in JavaScript, we
need to write our own check B. We’re only going to use this function within our
tidyUp() function, so we declare the isEmpty() function within it to keep its scope as
close as possible.

Listing 13.6 Cleaning up the handler constructs

Detects empty
objects b

Checks for type
handlers c

Checks for any
handlers d

Checks if data is
needed at all

 e
Licensed to Maxeta Technologies <account@maxetatech.com>

305Handler management
 We’re going to be cleaning up the data block associated with the element, so we
fetch it and store it in the data variable for later reference. Then we start to check to
see what, if anything, can be tidied away.

 First, we check to see if the array of handlers associated with the passed type is
empty c. If it is, it’s no longer needed and we blow it away. Additionally, as there are
no longer any handlers for this event type, we unbind the delegate that we registered
with the browser, as it’s no longer needed.

 Now that we’ve removed one of the arrays of handlers for an event type, there’s a
possibility that it may have been the only remaining such array, and its removal could
leave the handlers object empty. We test for that d and remove the handlers property
if it’s empty and therefore useless. In such a case, the delegate is no longer needed
either, so it’s also removed.

 Finally, we test to see if all these removals have resulted in the data block associated
with the element becoming pointless e, and if so, we jettison it as well.

 That’s how we keep things spic and span.

UNBINDING EVENT HANDLERS

Now that we know we can clean up after ourselves, pleasing Mr. Clean as well as Yoda,
we’re ready to tackle the function to unbind handlers that were bound with our add-
Event() function.

 To be as flexible as possible, we’re going to give the callers of our functions the fol-
lowing options:

■ Unbinding all bound events for a particular element
■ Unbinding all events of a particular type from an element
■ Unbinding a particular handler from an element

We’ll allow these variations simply by providing a variable-length argument list; the
more information the caller provides, the more specific the remove operation.

 For example, to remove all bound events from an element, we could write

removeEvent(element)

To remove all bound events of a particular type, we’d use

removeEvent(element, "click");

And to remove a particular instance of a handler, the code would be

removeEvent(element, "click", handler);

The latter assumes that we’ve maintained a reference to the original handler.
 The unbinding function to accomplish all this is depicted in the following listing.

this.removeEvent = function (elem, type, fn) {

 var data = getData(elem);

Listing 13.7 A function to unbind event handlers

Declares the function b

Fetches the associated
element data c
Licensed to Maxeta Technologies <account@maxetatech.com>

306 CHAPTER 13 Surviving events
 if (!data.handlers) return;

 var removeType = function(t){
 data.handlers[t] = [];
 tidyUp(elem,t);
 };

 if (!type) {
 for (var t in data.handlers) removeType(t);
 return;
 }

 var handlers = data.handlers[type];
 if (!handlers) return;

 if (!fn) {
 removeType(type);
 return;
 }

 if (fn.guid) {
 for (var n = 0; n < handlers.length; n++) {
 if (handlers[n].guid === fn.guid) {
 handlers.splice(n--, 1);
 }
 }
 }
 tidyUp(elem, type);
};

We start by defining our function signature with three parameters: the element, the event
type, and the function B. Callers can omit trailing arguments as described earlier.

 The next step is obtaining the data block associated with the passed element c.

TIP Because we’re allowing a variable-length argument list, it’d probably be
a good idea to check that an element was provided—it’s not optional. How
would you go about doing that?

Once we’ve obtained the block, we check to see if there are any bound handlers and
short-circuit the entire function if not d. Note that we didn’t need to check inside the
handlers object to see if it was empty, or if it contained empty lists of handlers, because
of the tidying up that will happen as a result of the function that we developed in list-
ing 13.6. That’s going to help make this function a lot cleaner by eliminating empty
data constructs and the need for complex checks for them.

 If we make it through the previous check, we know that we’re going to be removing
bound handlers by event type—either all types (if the type parameter is omitted), or a spe-
cific type (identified by the type parameter). In either case, we’re going to be removing by
type in more than one location, so to avoid needlessly repeating code, we define a utility
function e that, given a type t, removes all handlers for that type by replacing the array
of handlers with an empty array, and then calls the tidyUp() function on that type.

 With that function in place, we check to see if the type parameter was omitted f,
and if so, go about removing all handlers for all types on the element. In this case, we
simply return because our job is finished.

Short-circuits if
there’s nothing to do dSets up

a utility
function

 e

Removes all bound
handlers f

Finds all handlers
for a type g

Removes all handlers
for a type h

Removes one bound
handler i
Licensed to Maxeta Technologies <account@maxetatech.com>

307Handler management
NOTE We short-circuit the removeEvent() function in listing 13.7 with numer-
ous return statements. Some developers dislike this style and prefer a single
return, controlling flow with deeply nested conditionals. If you’re one of
those people, you could try your hand at rejigging the function to use a single
return (or implied return).

If we make it to this point, we know that we’ve been provided with an event type for
which we’ll be removing either all handlers (if the fn argument is omitted), or a spe-
cific handler for that type. So, in order to reduce code clutter, we grab the list of han-
dlers for that type and store it in a variable named handlers g. If there aren’t any,
there’s nothing to do, so we return.

 If the fn argument was omitted, h we call our removal utility function to blow
away all of the handlers for the specified event type, and return.

 Failing all the previous checks that might have caused us to remove something and
then return, we know that a specific handler has been passed to us for removal. But if
it’s not a handler that we’ve “touched,” there’s no need to bother looking for it, so we
check to see if the guid property has been added to the function (which would have
happened when the function was passed to the addEvent() method), and we ignore it
if not.

 If it’s a handler that we’ve instrumented, we look through the list of handlers for it,
removing any instances that we find (there could be more than one) i. And, as
usual, we tidy up before we return.

SMOKE-TESTING THE FUNCTIONS

Let’s look at a simple smoke test for our bind and unbind functions. As before, list-
ing 13.8 sets up a small page that uses manual intervention to run a simple visual test.

NOTE The term “smoke-testing” means to make a cursory test of the major
functions of whatever is being tested. It’s far from a rigorous test and simply
makes sure that the test subject seems to work on a gross basis. The term orig-
inates from the late 1800s, when smoke would be forced through pipes to
find leaks. Later, in the world of electronics, the first test performed on a new
circuit was to simply plug it in and see if anything burst into flames!

<script type="text/javascript">

 addEvent(window, "load", function () {

 var subjects = document.getElementsByTagName("div");

 for (var i = 0; i < subjects.length; i++) (function (elem) {

 addEvent(elem, "mouseover", function handler(e) {
 this.style.backgroundColor = "red";
 });

 addEvent(elem, "click", function handler(e) {
 this.style.backgroundColor = "green";

Listing 13.8 Smoke-testing the event functions

Binds the load
handler b

Collects the
test subjects c

Binds mouse
events d

Binds click
events e
Licensed to Maxeta Technologies <account@maxetatech.com>

308 CHAPTER 13 Surviving events
 removeEvent(elem, "click", handler);
 });

 })(subjects[i]);

 });
</script>

<div id="testSubject1" title="Click once">一度クリックします </div>
<div id="testSubject2" title="mouse over">マウス </div>
<div id="testSubject3" title="many times">何度も </div>

In this simple test, we’re going to bind three different types of events and unbind one
of them. First, we establish a handler for the page load event B—our test subjects
(three <div> elements) are defined after our script block, so we need to delay the exe-
cution of the rest of the script until after the DOM has been loaded.

 When that event fires, our handler collects all the <div> elements c and iterates
over them. For each, we establish two things:

■ A mouseover handler that turns the element red d
■ A click handler that turns the element green, then unbinds itself, such that

each element will react to a click exactly once e

Loading the page into a browser, we perform the following steps:

1 We mouse over the elements, observing that they all turn red when we do so.
This verifies that the mouseover event was correctly bound and activated.

2 We click on an element, observing that it turns green. This verifies that the
click handler was correctly bound and activated. Figure 13.4 shows the page at
this stage.

3 We run the mouse over the clicked element, observe that it turns back to red (as
expected because of the mouseover handler), and click on the element again.

4 If the click handlers were correctly unbound, they won’t trigger (which would
cause the element to turn to green again) and the element would remain red.
Our observation verifies that this is the case.

This is far from a rigorous test. As an exercise, try your hand at writing a series of asserts
that will automate testing of the functions, exercising all of the functions’ features.

Figure 13.4 Our smoke test shows
that at least some of the major
features of our functions are
operating correctly.
Licensed to Maxeta Technologies <account@maxetatech.com>

309Triggering events
BONUS In the events.js file included in the code examples for this book, we
included a handy proxy() function. This function can be used to cajole the
function context of an event handler to be something other than the event
target when triggered. This is the exact same treachery that we explored in
section 4.3.

We can now exert a great deal of control over the binding and unbinding of events.
Let’s see what other magic wands we can wave over events.

13.4 Triggering events
Under normal circumstances, events are triggered when occurrences such as user
actions, browser actions, or network activity take place. Sometimes, though, we might
want to trigger the same response to the activity under script control. (We’ll be seeing
shortly that this isn’t only desirable, but also necessary when working with custom
events.) For example, there may be a click handler that we not only want to trigger
when the user clicks the button, but when some other activity occurs that we’re exe-
cuting script in response to.

 We could be very un-ninja-like about it and simply repeat the code, but we know
better than that. One viable approach would be to factor the common code into a
named function that we could call from any location. But that solution isn’t without its
namespace issues, and it could detract from the clarity of the code base. Besides, usu-
ally when we’d want to do this, we wouldn’t want to call a function but to simulate the
event. So the ability to trigger event handlers without a “real” event would be an
advantage that we’d like to give ourselves.

 When a triggering a handler function, we need to make sure a number of things
will happen:

■ Trigger the bound handler on the element that we target
■ Cause the event to bubble up the DOM, triggering any other bound handlers
■ Cause the default action to be triggered on the target element (when it

has one)

The next listing shows a function that handles all of this, presupposing that we’re uti-
lizing the functions of the previous section to handle event binding.

function triggerEvent(elem, event) {

 var elemData = getData(elem),
 parent = elem.parentNode || elem.ownerDocument;

 if (typeof event === "string") {
 event = { type:event, target:elem };
 }
 event = fixEvent(event);

Listing 13.9 Triggering a bubbling event on an element

Fetches element data
and reference to parent

(for bubbling)

If the event name was passed as a
string, creates an event out of it

Normalizes event
properties
Licensed to Maxeta Technologies <account@maxetatech.com>

310 CHAPTER 13 Surviving events

Unless
explicit
stopped
recursiv
calls th
function
bubble t
event up
DOM

Re-
eve
disp
 if (elemData.dispatcher) {
 elemData.dispatcher.call(elem, event);
 }

 if (parent && !event.isPropagationStopped()) {
 triggerEvent(parent, event);
 }

 else if (!parent && !event.isDefaultPrevented()) {

 var targetData = getData(event.target);

 if (event.target[event.type]) {

 targetData.disabled = true;

 event.target[event.type]();

 targetData.disabled = false;

 }

 }
}

Our triggerEvent() function accepts two parameters:

■ The element upon which the event will be triggered
■ The event that’s to be triggered

The latter can be either an event object or a string containing the event type.
 To trigger the event, we traverse from the initial event target all the way up to the

top of the DOM, executing any handlers that we find along the way B. When we reach
the document element, the execution of bubbling is over, and we can execute the
default action for the event type on the target element, if it has one g.

 Note that during the event-bubbling activity, we make sure that propagation
hasn’t been stopped c, and before executing any default action, we also check that
it hasn’t been disabled d. Also, note that we disable our event dispatcher f while
executing the default action, because we’ve already triggered the handlers ourselves
and don’t want to risk double execution.

 To trigger the default browser action, we use the appropriate method on the origi-
nal target element. For example, if we trigger a focus event, we check to see if the orig-
inal target element has a .focus() method e and execute it.

 The ability to trigger events under script control is really useful in its own right, but
we’ll also find that it implicitly allows custom events to just work.

 Custom events?

13.4.1 Custom events

Haven’t you ever fervently desired the ability to trigger your own custom events?
 Imagine a scenario where you want to perform an action, but you want to trigger it

under a variety of conditions from different pieces of code, perhaps even from code
that’s in shared script files.

If the passed element has a
dispatcher, executes the
established handlers

 b

ly
,
ely
e
 to
he
 the

 c

If at the top of the DOM,
triggers the default action
unless disabled

 d

Checks if the target has
default action for this event e

Temporarily disables event
dispatching on the target
because we’ve already
executed handler

 f

Executes any
default action g

enables
nt
atching
Licensed to Maxeta Technologies <account@maxetatech.com>

311Triggering events
 The novice would repeat the code everywhere it’s needed. The intermediate would
create a global function and call it from everywhere it’s needed. The ninja uses cus-
tom events.

 Let’s chat a bit about why we’d want to consider that.

LOOSE COUPLING

Picture the scenario where we’re doing operations from shared code, and we want to
let page code know when it’s time to react to some condition. If we use the global
function approach, we introduce the disadvantage that our shared code needs to
define a fixed name for the function, and all pages that use the shared code need
to define such a function.

 Moreover, what if there are multiple things to do when the triggering condition
occurs? Making allowances for multiple notifications would be arduous and necessar-
ily messy.

 These disadvantages that we’re seeing are a result of close coupling, in which the
code that detects the conditions has to know the details of the code that will react to
that condition.

 Loose coupling, on the other hand, occurs when the code that triggers the condition
doesn’t know anything about the code that will react to the condition, or even if
there’s anything that will react to it at all.

 One of the advantages of event handlers is that we can establish as many as we want,
and these handlers are completely independent. So event handling is a good example
of loose coupling. When a button click event is triggered, the code triggering the event
has no knowledge of what handlers we’ve established on the page, or even if there are
any. Rather, the click event is simply pushed onto the event queue by the browser (see
chapter 3 for a refresher, if needed), and whatever caused the event to trigger could
care less what happens after that. If handlers have been established for the click event,
they will eventually be individually invoked in a completely independent fashion.

 There’s much to be said for loose coupling. In our scenario, the shared code,
when it detects an interesting condition, simply triggers a signal of some sort that says,
“this interesting thing has happened; anyone interested can deal with it,” and it
couldn’t give a darn if anyone’s interested or not.

 Rather than invent our own signaling system, we can use the code that we’ve already
developed in this chapter to leverage event handling as our signaling mechanism.

 Let’s examine a concrete example.

AN AJAX-Y EXAMPLE

Let’s pretend that we’ve written some shared code that will be performing an Ajax
request for us. The pages that this code will be used on want to be notified when an
Ajax request begins and when it ends; each page has its own things that it needs to do
when these “events” occur.

 For example, on one page using this package, we want to display an animated GIF
of a spinning pinwheel when an Ajax request starts, and we want to hide it when the
Licensed to Maxeta Technologies <account@maxetatech.com>

312 CHAPTER 13 Surviving events
request completes, in order to give the user some visual feedback that a request is
being processed.

 If we imagine the start condition as an event named ajax-start, and the stop condi-
tion as ajax-complete, wouldn’t it be grand if we could simply establish event handlers
on the page for these events that show and hide the image as appropriate?

 Consider this:

var body = document.getElementsByTagName('body')[0];

addEvent(body, 'ajax-start', function(e){
 document.getElementById('whirlyThing').style.display = 'inline-block';
});

addEvent(body, 'ajax-complete', function(e){
 document.getElementById('whirlyThing').style.display = 'none';
});

Sadly, these events don’t really exist.
 But we’ve developed the code to add event handlers and code to mimic the trig-

gering of handlers, so we can use that code to simulate custom events that don’t rely
upon the browser understanding our custom event types.

TRIGGERING CUSTOM EVENTS

Custom events are a way of simulating (for the user of our shared code) the experi-
ence of a real event without having to use the browser’s underlying event support.
We’ve already done some work to support cross-browser events, and supporting cus-
tom events turns out to be something that we’ve already implemented!

 We don’t need to change anything in the code we’ve already written for addEvent(),
removeEvent(), and triggerEvent()to support custom events. Functionally, there’s no
difference between a real browser event that will be fired by the browser and an event
that doesn’t really exist that will only fire when triggered manually.

 The following listing shows an example of triggering a custom event.

<!DOCTYPE html>
<html>
 <head>
 <title>Listing 13.10</title>
 <meta charset="utf-8">
 <script type="text/javascript" src="data.js"></script>
 <script type="text/javascript" src="fixup.js"></script>
 <script type="text/javascript" src="events.js"></script>
 <script type="text/javascript" src="trigger.js"></script>
 <style type="text/css">
 #whirlyThing { display: none; }
 </style>

 <script type="text/javascript" src="ajaxy-operation.js"></script>

 <script type="text/javascript">

Listing 13.10 Using custom events
Licensed to Maxeta Technologies <account@maxetatech.com>

313Triggering events

Est
han
cus
nam
com
bod
tha
the
hid
cou
her
 addEvent(window, 'load', function(){

 var button = document.getElementById('clickMe');
 addEvent(button, 'click', function(){
 performAjaxOperation(this);
 });

 var body = document.getElementsByTagName('body')[0];

 addEvent(body, 'ajax-start', function(e){
 document.getElementById('whirlyThing')
 .style.display = 'inline-block';
 });

 addEvent(body, 'ajax-complete', function(e){
 document.getElementById('whirlyThing')
 .style.display = 'none';
 });

 });

 </script>
 </head>
 <body>

 <button type="button" id="clickMe">Start</button>

 </body>
</html>

In this manual test, we cursorily check custom events by establishing the scenario that
we described in the previous section: an animated pinwheel image f will be displayed
while an Ajax operation is under way. The operation is triggered by the click B of a
button e.

 In a completely decoupled fashion, a handler for a custom event named ajax-start
is established c, as is one for the ajax-complete custom event d. The handlers for
these events show and hide the pinwheel image f respectively.

 Note how the three handlers know nothing of each other’s existence. In particular,
the button click handler has no responsibilities with respect to showing and hiding
the image.

 The Ajax operation itself is simulated with the following code:

function performAjaxOperation(target) {

 triggerEvent(target, 'ajax-start');

 window.setTimeout(function(){
 triggerEvent(target, 'ajax-complete');
 },5000);

}

The function triggers the ajax-start event, pretending that an Ajax request is about to
be made. The choice of the button as the initial target of the event is arbitrary.

Adds a click handler to the
button that will trigger a
5-second Ajax operation.

This handler knows nothing
about the pinwheel image.

 b

Establishes the handler for a
custom event named ajax-
start on the body element

that will cause the image to be
displayed. There is no coupling
with the code that reacts to

the button click.

 c

ablishes a
dler for a
tom event
ed ajax-
plete on the
y element
t will cause
 image to be
den. No
pling
e either.

 d

Creates the button
to click on e

Defines the pinwheel image
that should only be shown while
an Ajax operation is under way f
Licensed to Maxeta Technologies <account@maxetatech.com>

314 CHAPTER 13 Surviving events
Because the handlers are established in the body (a customary location), all events
will eventually bubble up to the body, and the handler will be triggered.

 The function then issues a five-second timeout, simulating an Ajax request that
spans five seconds. When the timer expires, we pretend that the response has been
returned and trigger an ajax-complete event to signify that the Ajax operation
has completed.

 The displays are shown in figure 13.5.
 Notice the high degree of decoupling throughout this example. The shared Ajax

operation code has no knowledge of what the page code is going to do when the
events are triggered, or even if there’s page code to trigger at all. The page code is
modularized into small handlers that don’t know about each other. Furthermore, the
page code has no idea how the shared code is doing its thing; it just reacts to events
that may or may not be triggered.

 This level of decoupling helps to keep code modular, easier to write, and a lot eas-
ier to debug when something goes wrong. It also makes it easy to share portions of
code and to move them around without fear of violating some coupled dependency
between the code fragments. Decoupling is a fundamental advantage when using cus-
tom events in our code, and it allows us to develop applications in a much more
expressive and flexible manner.

 Even though you may not have realized it yet, the code in this section was not only
a good example of decoupling, it was also a good example of delegation.

Figure 13.5 Custom events can
be used to cause code to trigger
in a decoupled manner.
Licensed to Maxeta Technologies <account@maxetatech.com>

315Bubbling and delegation
13.5 Bubbling and delegation
Simply put, delegation is the act of establishing event handlers at higher levels in the
DOM than the items of interest.

 Recall that even though the image buried within the DOM was the element that we
wanted to be affected by the custom events, we established handlers on the body ele-
ment to cause the image’s visibility to be affected. This was an example of delegating
authority over the image to an ancestor element, in this case, the body element.

 But limited to custom tags, or even the body element. Let’s imagine a scenario
using more mundane event types and elements.

13.5.1 Delegating events to an ancestor
Let’s say that we wanted to visually indicate whether a cell within a table had been
clicked on by the user by initially displaying a white background for each cell, and
changing the background color to yellow once the cell was clicked upon. Sounds easy
enough. We can just iterate through all the cells and establish a handler on each one
that changes the background color property:

var cells = document.getElementsByTagName('td');

for (var n = 0; n < cells.length; n++) {
 addEvent(cells[n], 'click', function(){
 this.style.backgroundColor = 'yellow';
 });
}

Sure this works, but is it elegant? Not very. We’re establishing the exact same event
handler on potentially hundreds of elements, and they all do the exact same thing.

 A much more elegant approach is to establish a single handler at a level higher
than the cells that can handle all the events using the event bubbling provided by the
browser. We know that all the cells will be descendants of their enclosing table, and we
know that we can get a reference to the element that was clicked upon via event.target.
It’s much more suave to delegate the event-handling to the table, as follows:

var table = document.getElementById('#someTable');

addEvent(table, 'click', function(event){
 if (event.target.tagName.toLowerCase() == 'td')
 event.target.style.backgroundColor = 'yellow';
});

Here, we establish one handler that easily handles the work of changing the back-
ground color for all cells clicked in the table. This is much more efficient and elegant.

 Event delegation is one of the best techniques available for developing high-
performance, scalable web applications.

 Because event bubbling is the only technique available across all browsers (event
capturing doesn’t work in IE versions prior to IE 9), it’s important to make sure that
event delegation is applied to elements that are ancestors of the elements that are
the event targets. That way, we’re sure that the events will eventually bubble up to the
element to which the handler has been delegated.
Licensed to Maxeta Technologies <account@maxetatech.com>

316 CHAPTER 13 Surviving events
 That all seems logical and easy enough, but... There always seems to be a “but,”
doesn’t there?

13.5.2 Working around browser deficiencies

Unfortunately the submit, change, focus, and blur events all have serious problems with
their bubbling implementations in various browsers. If we want to employ event delega-
tion—and we do—we must figure out how these deficiencies can be worked around.

 To start, the submit and change events don’t bubble at all in legacy Internet
Explorer, but the W3C DOM-capable browsers implement bubbling consistently. So, as
we’ve done throughout this book, we’ll use a technique that’s capable of gracefully
determining if the problem exists and needs to be worked around. In this case, we
need to determine if an event is capable of bubbling up to a parent element.

 One such piece of detection code, shown in the following listing, was written by
Juriy Zaytsev (as described in his Perfection Kills blog at http://perfectionkills.com/
detecting-event-support-without-browser-sniffing/).

function isEventSupported(eventName) {

 var element = document.createElement('div'),
 isSupported;

 eventName = 'on' + eventName;
 isSupported = (eventName in element);

 if (!isSupported) {
 element.setAttribute(eventName, 'return;');
 isSupported = typeof element[eventName] == 'function';
 }

 element = null;

 return isSupported;
}

The bubbling-detection technique works by checking to see if an existing ontype
(where type is the type of the event) property exists on a <div> element c. A <div> ele-
ment is used because those elements typically have the most diverse types of events
bubbled up to them (including change and submit).

 We can’t count on a <div> element already existing in the page—and even if we
could, we don’t really want to start sticking our fingers in someone else’s element—so
we create a temporary element to play around with B.

 If this quick and simple test fails, we have a more invasive one we can try d. If the
ontype property doesn’t exist, we create an ontype attribute, giving it a bit of code, and
check to see if the element knows how to translate that into a function. If it does,
then it’s a pretty good indicator that it knows how to interpret that particular event
upon bubbling.

Listing 13.11 Event-bubbling detection code originally written by Juriy Zaytsev

Creates a new <div> element that
we’ll perform tests upon. We’ll

delete it later. b

Tests if the event is supported by
checking if a property supporting the
event is present on the element.

 c

If the simple approach
fails, creates an event-
handler attribute and
checks if it “sticks.”

 d

Regardless of the result, wipes
out the temporary element.
Licensed to Maxeta Technologies <account@maxetatech.com>

http://perfectionkills.com/detecting-event-support-without-browser-sniffing/
http://perfectionkills.com/detecting-event-support-without-browser-sniffing/

317Bubbling and delegation
 Now let’s use this detection code as the basis for implementing properly working
event bubbling across all browsers.

BUBBLING SUBMIT EVENTS

The submit event is one of the few that doesn’t bubble in legacy Internet Explorer, but
thankfully, it’s one of the easiest events to simulate.

 A submit event can be triggered in one of two ways:

■ By triggering an input or button element with type of submit, or an input ele-
ment of type image. Such elements can be triggered with a click, or with the
Enter or spacebar key when focused.

■ By pressing Enter while inside a text or password input.

Knowing about these two cases, we can piggyback on the two triggering events, click
and keypress, both of which bubble normally.

 The approach we’ll take (for now) is to create special functions to bind and
unbind submit events. If we determine that submit events need to be handled specially
because browser support is lacking, we’ll establish the piggybacking; otherwise, we’ll
just bind and unbind the handler normally.

<script type="text/javascript">

 (function(){

 var isSubmitEventSupported = isEventSupported("submit");

 function isInForm(elem) {
 var parent = elem.parentNode;
 while (parent) {
 if (parent.nodeName.toLowerCase() === "form") {
 return true;
 }
 parent = parent.parentNode;
 }
 return false;
 }

 function triggerSubmitOnClick(e) {
 var type = e.target.type;
 if ((type === "submit" || type === "image") &&
 isInForm(e.target)) {
 return triggerEvent(this,"submit");
 }
 }

 function triggerSubmitOnKey(e) {
 var type = e.target.type;
 if ((type === "text" || type === "password") &&
 isInForm(e.target) && e.keyCode === 13) {
 return triggerEvent(this,"submit");
 }
 }

Listing 13.12 Piggybacking submit bubbling on click or keypress

Defines a utility
function that we’ll use
to check if the passed
element is within a
form or not

 b

Predefines a handler for clicks
that will check to see if the

submit event should piggyback on
this event, and triggers one if so

 c

Predefines a handler for
keypresses that will check to
see if a submit event should
piggyback on this event, and
triggers one if so

 d
Licensed to Maxeta Technologies <account@maxetatech.com>

318 CHAPTER 13 Surviving events

Creat
specia
funct
for b
submi
event

Creat
specia
funct
for un
submi
 this.addSubmit = function (elem, fn) {

 addEvent(elem, "submit", fn);
 if (isSubmitEventSupported) return;

 // But we need to add extra handlers if we're not on a form
 // Only add the handlers for the first handler bound
 if (elem.nodeName.toLowerCase() !== "form" &&
 getData(elem).handlers.submit.length === 1) {
 addEvent(elem, "click", triggerSubmitOnClick);
 addEvent(elem, "keypress", triggerSubmitOnKey);
 }

 };

 this.removeSubmit = function (elem, fn) {

 removeEvent(elem, "submit", fn);
 if (isEventSupported("submit")) return;

 var data = getData(elem);

 if (elem.nodeName.toLowerCase() !== "form" &&
 !data || !data.events || !data.events.submit) {
 removeEvent(elem, "click", triggerSubmitOnClick);
 removeEvent(elem, "keypress", triggerSubmitOnKey);
 }
 };

 })();

</script>

First of all, we’re using the immediate function technique, which should be familiar
by now, to create a self-contained environment for our code. But before we get into
the meat of adding special support for submit events, we’re going to define a few
things up front that we’ll need later.

 First, we need to determine if an element is inside a form in a couple of locations,
so we define a function named isInForm() B to do that for us. It simply traverses the
ancestor tree of the element to determine if one of its ancestors is a form.

 Then we define two functions that we’ll use as event handlers: one for clicks, and
one for keypresses. The first such function c triggers a submit event if the element
is in a form and the target element has submit semantics (has a type of submit, or is
an image input element). The second function d triggers a submit event if the key-
press is the Enter key and the target element is in a form and is a text or password
input element.

 With those helpers defined, we’re ready to write the bind and unbind functions.
 The addSubmit() binding function e first establishes the submit handler as nor-

mal, using the addEvent() function f, and then returns if the browser properly sup-
ports submit bubbling. If not, we check to make sure we’re not binding to a form (in
which case bubbling isn’t a problem) and whether this is the first submit handler
being bound g. If submit bubbling is supported, we establish the piggybacking han-
dlers for clicks and keypresses.

es a
l
ion
inding
t
s

 e

Binds the submit handler normally, and
short-circuits the rest of the function
if browser support is adequate

 f

If not a form and is the
first submit handler,
establishes handlers for
click and keypress
piggybacking

 g

es a
l
ion
binding

t events

 h Unbinds the handler normally, and
exits if browser support is adequate i

If not a form and is
the last handler to be
unbound, removes the
piggybacking handlers

 j
Licensed to Maxeta Technologies <account@maxetatech.com>

319Bubbling and delegation
 The removeSubmit() unbinding function h works in a similar fashion. We unbind
the submit event as normal and exit if the browser adequately supports submit bub-
bling i. If it doesn’t, we unbind the piggybacking handlers if the target isn’t a form
and this is the last of the submit handlers being unbound j.

NOTE We created this logic as separate functions that use the services of add-
Event() to make it easier to focus on the code necessary to handle submit
events. But having separate functions is obviously not very caller-friendly.
What we should really do is put this logic inside addEvent() so that all this
would happen automatically and invisibly for the caller of our code. How
would you go about merging this capability into addEvent()?

This approach tends to apply well to fixing other DOM bubbling events, such as the
change event.

BUBBLING CHANGE EVENTS

The change event is another event that doesn’t bubble properly in the legacy IE Model.
Unfortunately, it’s significantly harder to implement properly than the submit event.
In order to implement the bubbling change event, we must bind to a number of differ-
ent events:

■ The focusout event for checking the value after moving away from the form
element

■ The click and keydown events for checking the value the instant it’s been changed
■ The beforeactivate event for getting the previous value before a new one is set

The following listing shows an implementation of special functions that bind and
unbind change handlers by piggybacking on all of the preceding events.

<script type="text/javascript">

 (function(){

 this.addChange = function (elem, fn) {

 addEvent(elem, "change", fn);
 if (isEventSupported("change")) return;

 if (getData(elem).events.change.length === 1) {
 addEvent(elem, "focusout", triggerChangeIfValueChanged);
 addEvent(elem, "click", triggerChangeOnClick);
 addEvent(elem, "keydown", triggerChangeOnKeyDown);
 addEvent(elem, "beforeactivate", triggerChangeOnBefore);
 }
 };

 this.removeChange = function (elem, fn) {

 removeEvent(elem, "change", fn);
 if (isEventSupported("change")) return;

Listing 13.13 An implementation of a cross-browser bubbling change event

Defines a special binding function
for change events

Adds the handler normally
and bails if the browser has
adequate support

Piggybacks on other
events on first change

handler binding

Defines a special unbinding
function for change events

Removes the handler normally and
exits in supporting browsers
Licensed to Maxeta Technologies <account@maxetatech.com>

320 CHAPTER 13 Surviving events
 var data = getData(elem);
 if (!data || !data.events || !data.events.submit) {
 addEvent(elem, "focusout", triggerChangeIfValueChanged);
 addEvent(elem, "click", triggerChangeOnClick);
 addEvent(elem, "keydown", triggerChangeOnKeyDown);
 addEvent(elem, "beforeactivate", triggerChangeOnBefore);
 }
 };

 function triggerChangeOnClick(e) {
 var type = e.target.type;
 if (type === "radio" || type === "checkbox" ||
 e.target.nodeName.toLowerCase() === "select") {
 return triggerChangeIfValueChanged.call(this, e);
 }
 }

 function triggerChangeOnKeyDown(e) {
 var type = e.target.type,
 key = e.keyCode;
 if (key === 13 && e.target.nodeName.toLowerCase() !== "textarea" ||
 key === 32 && (type === "checkbox" || type === "radio") ||
 type === "select-multiple") {
 return triggerChangeIfValueChanged.call(this, e);
 }
 }

 function triggerChangeOnBefore(e) {
 getData(e.target)._change_data = getVal(e.target);
 }

 function getVal(elem) {
 var type = elem.type,
 val = elem.value;
 if (type === "radio" || type === "checkbox") {
 val = elem.checked;
 } else if (type === "select-multiple") {
 val = "";
 if (elem.selectedIndex > -1) {
 for (var i = 0; i < elem.options.length; i++) {
 val += "-" + elem.options[i].selected;
 }
 }
 } else if (elem.nodeName.toLowerCase() === "select") {
 val = elem.selectedIndex;
 }
 return val;
 }

 function triggerChangeIfValueChanged(e) {
 var elem = e.target, data, val;
 var formElems = /textarea|input|select/i;
 if (!formElems.test(elem.nodeName) || elem.readOnly) {
 return;
 }
 data = getData(elem)._change_data;
 val = getVal(elem);
 if (e.type !== "focusout" || elem.type !== "radio") {
 getData(elem)._change_data = val;

Removes
piggybacks if

the last
unbinding of

change handlers

Piggyback handler
for click events

Piggyback handler for
keydown events

Piggyback handler for
beforeactivate events; stores

value of element for
upcoming focusout event

Utility function that
fetches the value of
the passed element

Piggyback handler for the
focusout event; triggers if the

value of the element has changed
Licensed to Maxeta Technologies <account@maxetatech.com>

321Bubbling and delegation
 }
 if (data === undefined || val === data) {
 return;
 }
 if (data != null || val) {
 return triggerEvent(elem, "change");
 }
 }

 })();

</script>

A lot of this code is similar to the approach taken in listing 13.12, so we won’t go over
it in detail; there’s just more of it because there are more event types to handle. The
code specific to this example is mostly found within the getVal() and triggerChange-
IfValueChanged() functions.

 The getVal() method returns a serialized version of the state of the passed form
element. This value will be stored by any beforeactivate events in the _change_data
property within the element’s data object for later use.

 The triggerChangeIfValueChanged() function is responsible for determining if an
actual change has occurred between the previously stored value and the newly set
value, and for triggering the change event if they differ.

 In addition to checking to see if a change has occurred after a focusout (blur), we
also check to see if the Enter key was pressed on something that wasn’t a textarea ele-
ment, or if the spacebar was pressed on a check box or radio button. We also check to
see if a click occurred on a check box, radio button, or select element, because those
will also trigger a change to occur.

 All told, there’s a lot of code here for something that should be tackled natively by
the browser. It’ll be greatly appreciated when those legacy versions of IE have fallen
by the wayside and this code doesn’t need to exist.

IMPLEMENTING FOCUSIN AND FOCUSOUT EVENTS

The focusin and focusout events are proprietary events introduced by Internet
Explorer that detect when a standard focus or blur event has occurred on any ele-
ment, or any descendant of that element. These events occur before the focus or blur
takes place, making them equivalent to capturing events rather than bubbling events.

 The reason that these nonstandard events are worthy of our consideration is that
the focus and blur events don’t bubble, as dictated by the W3C DOM recommendation
and as implemented by all browsers. It ends up being far easier to implement focusin
and focusout clones across all browsers than trying to circumvent the intentions of the
browser standards and getting the events to bubble.

 The best way to implement the focusin and focusout events is to modify the existing
addEvent() function to handle the event types inline, as follows:

if (document.addEventListener) {
 elem.addEventListener(
 type === "focusin" ? "focus" :
Licensed to Maxeta Technologies <account@maxetatech.com>

322 CHAPTER 13 Surviving events
 type === "focusout" ? "blur" : type,
 data.handler, type === "focusin" || type === "focusout");
}
else if (document.attachEvent) {
 elem.attachEvent("on" + type, data.handler);
}

Then we modify the removeEvent() function to unbind the events again properly:

if (document.removeEventListener) {
 elem.removeEventListener(
 type === "focusin" ? "focus" :
 type === "focusout" ? "blur" : type,
 data.handler, type === "focusin" || type === "focusout");
}
else if (document.detachEvent) {
 elem.detachEvent("on" + type, data.handler);
}

The end result is support for the nonstandard focusin and focusout events in all brows-
ers. Naturally, we might want to keep our event-specific logic separate from our add-
Event and removeEvent internals. In that case, we could implement some form of
extensibility to override the native binding and unbinding mechanisms provided by
the browser for specific event types.

 More information about cross-browser focus and blur events can be found on the
QuirksMode blog: http://www.quirksmode.org/blog/archives/2008/04/delegating_
the.html.

 There’s another set of nonstandard, but useful, event types to consider.

IMPLEMENTING MOUSEENTER AND MOUSELEAVE EVENTS

The mouseenter and mouseleave events are two more custom events introduced by Inter-
net Explorer to simplify the process of determining when the mouse is currently posi-
tioned within or outside an element.

 Usually we’d interact with the standard mouseover and mouseout events provided by
the browser, but frequently they don’t really provide what we’re looking for. The prob-
lem is that they fire the event when you move between child elements in addition to
the parent element itself. This is typical of the event bubbling model, but it’s fre-
quently a problem when implementing things like menus and other interaction ele-
ments, when all we care about is if we’re still within an element; we don’t want to be
told we’ve left it just because we’ve entered a child element.

 Figure 13.6 illustrates this issue.
 When the mouse cursor moves over the boundary from the parent to the child ele-

ment, a mouseout event is triggered, even though we might consider the cursor to still
be within the bounds of the parent element. Likewise, a mouseover event will be trig-
gered when we leave the child element.

 This situation is where the mouseenter and mouseleave events are quite handy.
They’ll only fire on the main element upon which we’ve bound them, and they’ll only
tell us we’ve left if the cursor actually leaves the parent element. As Internet Explorer
Licensed to Maxeta Technologies <account@maxetatech.com>

http://www.quirksmode.org/blog/archives/2008/04/delegating_the.html.
http://www.quirksmode.org/blog/archives/2008/04/delegating_the.html.

323Bubbling and delegation
is the only browser that currently implements these useful events, we need to simulate
the full event interaction for other browsers as well.

 The following listing shows the implementation of a function named hover() that
adds support for the mouseenter and mouseleave events in all browsers.

<script>
 (function() {

 if (isEventSupported("mouseenter")) {

 this.hover = function (elem, fn) {
 addEvent(elem, "mouseenter", function () {
 fn.call(elem, "mouseenter");
 });

 addEvent(elem, "mouseleave", function () {
 fn.call(elem, "mouseleave");
 });
 };

 }
 else {

 this.hover = function (elem, fn) {
 addEvent(elem, "mouseover", function (e) {
 withinElement(this, e, "mouseenter", fn);
 });

Listing 13.14 Adding support for mouseenter and mouseleave to all browsers

Parent element

Enclosed child element

As the cursor moves across this boundary, a

mouseout event is triggered on the parent.

Generally, we don't care that we're leaving the

"inside" the parent.

Direction of movement

Figure 13.6 When crossing the
boundary from a parent to a child
element, do we really consider that
to be “leaving” the parent?

Tests if the browser natively
supports mouseenter (and hence,
mouseleave) events

Adds handlers that
invoke the handler for browsers

that support the events

In nonsupporting browsers, handle
mouseover and mouseout using a
handler that detects whether
the handler should fire or not
Licensed to Maxeta Technologies <account@maxetatech.com>

324 CHAPTER 13 Surviving events

G
e
w
e
f
e

 addEvent(elem, "mouseout", function (e) {
 withinElement(this, e, "mouseleave", fn);
 });
 };

 }

 function withinElement(elem, event, type, handle) {

 var parent = event.relatedTarget;

 while (parent && parent != elem) {
 try {
 parent = parent.parentNode;
 }
 catch (e) {
 break;
 }
 }
 if (parent != elem) {
 handle.call(elem, type);
 }
 }

 })();
</script

Most of the smarts for handling the mouseenter and mouseleave events lie inside the
withinElement() function, which we establish as the handler for mouseover and mouseout
events in browsers that don’t support the nonstandard events. This function checks
the relatedTarget of the event, which will be the element being entered for mouseout
events and the element being left for mouseover events. In either case, if the related ele-
ment is within the hovered element, we ignore it. Otherwise, we know that it’s the hov-
ered element that’s being left or entered, and we trigger the handler.

 Speaking of leaving, before we exit this chapter on events, there’s one more event
that’s mighty handy to have around. Let’s take a look at it.

13.6 The document ready event
The final event that we’ll consider is called the “ready” event, and it’s implemented as
DOMContentLoaded in W3C DOM-capable browsers.

 This ready event fires as soon as the entire DOM document has been loaded, indi-
cating that it’s ready to be traversed and manipulated. This event has become an inte-
gral part of many modern frameworks, allowing code to be layered unobtrusively. It
executes before the page is displayed and without waiting for other resources to
load—resources that can delay the firing of the load event.

 Doing this in a cross-browser fashion is once again complicated by the need to sup-
port legacy versions of IE (those prior to IE 9).

 The W3C browsers make it easy by triggering a DOMContentLoaded event when the
DOM is ready. But for legacy IE, we need to rely on a multi-pronged attack to be noti-
fied as soon as the DOM is ready.

Internal handler that
fires the original handler
to mimic the nonstandard

behavior

ets the
lement
e’re
ntering
rom, or
xiting to

Traverses upward until it
hits the top of the DOM
or the hovered element

In case of error, assumes we’re
done (can happen with Firefox
XUL elements)

If not exiting or entering the
hovered element, triggers the handler
Licensed to Maxeta Technologies <account@maxetatech.com>

325The document ready event
 One of these techniques will use a trick developed by Diego Perini and described
at http://javascript.nwbox.com/IEContentLoaded/, in which we attempt to scroll the
document to the extreme left (its natural position). This attempt will fail until
the document is loaded, so if we continually try to perform the operation (using a
timer to make sure we don’t block the event loop) we’ll know the DOM is ready when
the operation stops failing.

 A second prong of our attack on legacy IE is listening for the onreadystatechange event
on the document. This particular event is less consistent than the doScroll technique—
it’ll always fire after the DOM is ready, but it’ll sometimes fire quite a while afterwards
(but always before the final window load event). Even so, it serves as a good backup for IE,
making sure that at least something will fire before the window load event.

 The third prong is examining the document.readyState property. This property,
available in all browsers, records how fully loaded the DOM document is at that point.
We want to know when it reaches “complete” status. Long delays in loading, especially
in Internet Explorer, may cause the readyState to report “complete” too early, which is
why we aren’t solely relying upon it. But checking this property on load can help us
avoid unnecessary event binding if the DOM is already in a ready-to-use state.

NOTE For more info on document status, see the Mozilla documentation at
https://developer.mozilla.org/en-US/docs/DOM/document.readyState.

Let’s look at an implementation of the ready event, using the preceding techniques.

<script type="text/javascript">

 (function () {

 var isReady = false,
 contentLoadedHandler;

 function ready() {
 if (!isReady) {
 triggerEvent(document, "ready");
 isReady = true;
 }
 }

 if (document.readyState === "complete") {
 ready();
 }

 if (document.addEventListener) {
 contentLoadedHandler = function () {
 document.removeEventListener(
 "DOMContentLoaded", contentLoadedHandler, false);
 ready();
 };

 document.addEventListener(
 "DOMContentLoaded", contentLoadedHandler, false);

 }

Listing 13.15 Implementing a cross-browser DOM ready event

Starts off
assuming that
we’re not ready Defines a function that

triggers the ready handler
only once; subsequent calls

will do nothing

If the DOM is ready by
the time we get here,
just fire the handler

For W3C browsers, creates a
handler for DOMContentLoaded
event that fires off the ready

handler and removes itself

Establishes the just-created
handler for the

DOMContentLoaded event
Licensed to Maxeta Technologies <account@maxetatech.com>

http://javascript.nwbox.com/IEContentLoaded/
https://developer.mozilla.org/en-US/docs/DOM/document.readyState

326 CHAPTER 13 Surviving events
 else if (document.attachEvent) {
 contentLoadedHandler = function () {
 if (document.readyState === "complete") {
 document.detachEvent(
 "onreadystatechange", contentLoadedHandler);
 ready();
 }
 };

 document.attachEvent(
 "onreadystatechange", contentLoadedHandler);

 var toplevel = false;
 try {
 toplevel = window.frameElement == null;
 }
 catch (e) {
 }

 if (document.documentElement.doScroll && toplevel) {
 doScrollCheck();
 }
 }

 function doScrollCheck() {
 if (isReady) return;
 try {
 document.documentElement.doScroll("left");
 }
 catch (error) {
 setTimeout(doScrollCheck, 1);
 return;
 }
 ready();
 }
 })();

</script>

With a complete ready event implementation, we now have all the tools in place
for a complete DOM event-handling system. It’s high time to treat ourselves to a
lovely beverage.

13.7 Summary
In this chapter, we’ve seen that a complete DOM event-handling system is anything but
simple. The IE Model in legacy versions of IE, which will likely need to be supported
for quite a few years to come, causes a great deal of mayhem that we need to circum-
vent. But it’s not all IE’s fault; even the W3C browsers lack extensibility in the native
API, meaning that we still have to circumvent, and improve upon, most of the event
system in order to arrive at a solution that’s universally applicable.

 Here’s what we learned and did in this chapter:

■ There are three event-handling models in the browsers that we’re likely
required to support:
– DOM Level 0 is probably the most familiar, but it’s unsuitable for robust

event management.

For the IE Model, creates a
handler that removes itself
and fires the ready handler
if the document readyState

is complete

Establishes the previous handler
for onreadystatechange event.

Will likely fire late, but is
iframe-safe

If not in an
iframe, performs
scroll check

Defines the scroll check
function, which keeps trying

to scroll until success
Licensed to Maxeta Technologies <account@maxetatech.com>

327Summary
– DOM Level 2 is the W3C standard, but it lacks many features that we need to
create a full management suite.

– The IE Model is proprietary and has fewer features than DOM Level 2, but it’s
what we must use in legacy versions of IE.

■ One of the problems with the IE Model is the lack of proper context in the han-
dlers. We developed a handful of event binding and unbinding functions to
normalize this.

■ Another issue was the difference in the event information between DOM Level 2
and the IE Model, so we developed a function that “repairs” event instances to
be consistent across platforms.

■ We needed a means to store information regarding individual elements without
resorting to global storage, so we developed a way to tack data onto elements.
While we ended up using this to store event-handling information, it’s a general
facility that could be used for many purposes.

■ We enhanced our event binding and unbinding routines to use the data storage
facility to keep track of handlers for all event types for any element.

■ One of the more important features that we added to our event-management
suite was the ability to trigger events under script control. Although it’s useful
in its own right, we found that it enabled a bunch of really useful capabilities,
such as the ability to create and trigger custom events.

■ Creating and triggering custom events allowed us to bring loose coupling into
almost anything we want to do within a page. This makes creating independent
modular components a breeze.

■ We also learned how delegating event handling to ancestors of a target object
can be an efficient and elegant way to minimize the amount of code we need to
create and establish.

■ Focusing on browser deficiencies, we then developed ways to do the following:
– Cause submit events to bubble like other events
– Cause change events to bubble like other events
– Implement focusin and focusout events in all browsers
– Implement mouseenter and mouseleave events in all browsers

■ We developed a document ready handler that fires across all browsers to let us
know when the DOM is ready to be manipulated in advance of the browser
load event.

All told, we now have the knowledge necessary to implement a complete and useful
DOM event-management system that’s capable of tackling even the greatest challenge
presented to us by the browsers’ event models.

 We’re not done with browser headaches yet—manipulating the DOM itself also
holds its share of browser frustrations. The next chapter will confront those issues
head on.
Licensed to Maxeta Technologies <account@maxetatech.com>

Licensed to Maxeta Technologies <account@maxetatech.com>

Manipulating the DOM
If we were to open up a JavaScript library, we’d certainly notice (most likely with
some surprise) the length and complexity of the code behind simple DOM opera-
tions. Even presumably simple code, like cloning or removing a node (which both
have simple DOM counterparts, like cloneNode() and removeChild()), have relatively
complex implementations.

 This raises two questions:

■ Why is this code so complex?
■ Why do I need to understand how it works if the library will take care of it

for me?

The most compelling reason is performance. Understanding how DOM modification
works in libraries can allow you to write better and faster code that uses the library
or, alternatively, enable you to use those techniques in your own code.

This chapter covers
■ Injecting HTML into a page
■ Cloning elements
■ Removing elements
■ Manipulating element text
329

Licensed to Maxeta Technologies <account@maxetatech.com>

330 CHAPTER 14 Manipulating the DOM
 There are two points that will likely be surprising to most people who are using a
library: not only do libraries handle more cross-browser inconsistencies than typical
handwritten code, but they frequently run faster as well. The reason for the perfor-
mance improvement isn’t all that surprising—the library developers keep on top of
the latest browser additions. Libraries are thus using the best-possible techniques for
creating the most performant code.

 For example, when injecting HTML fragments into a page, libraries are using docu-
ment fragments or createContextualFragment() to inject HTML. Neither of these tech-
niques is commonly used in everyday development, and yet they both allow you to
insert elements into a page in ways that are even faster than most better known meth-
ods (such as createElement()).

 Another possibility for performance improvement is in the area of memory man-
agement. It’s relatively safe to say that most developers rarely think of the memory
usage of their web applications. This isn’t the case for a JavaScript library; it must take
into account memory usage and make sure that duplicate resources aren’t created
needlessly. The examples provided in this chapter will reveal many techniques that
you can use to help reduce memory consumption in your own applications.

 This chapter will talk about all those nasty cross-browser issues prevalent in DOM
modification code and also the areas in which extra performance can be squeezed
out. Understanding how those performance improvements have been made will
allow you to write web applications that run faster than what you’d normally be able
to create.

 Here are some resources for further reading that you might enjoy:

■ range.createContextualFragment() is the new hotness, although it’s not in jQuery yet:
https://developer.mozilla.org/en/DOM/range.createContextualFragment.

■ metamorph.js is a DOM manipulation implementation that’s worthy of citing:
https://github.com/tomhuda/metamorph.js/blob/master/lib/metamorph.js.

Enough talk. Let’s push up our sleeves and dive into manipulating the DOM.

14.1 Injecting HTML into the DOM
In this chapter, we’ll start by looking at an efficient way to insert HTML into a docu-
ment at any location, given that HTML in string form. We’re looking at this particular
technique because it’s frequently used in a few ways:

■ Injecting arbitrary HTML into a page and manipulating and inserting client-
side templates

■ Retrieving and injecting HTML sent from a server

It’s somewhat technically challenging to implement this functionality correctly, espe-
cially when compared to building an object-oriented-style DOM construction API
(which is certainly easier to implement, but it requires an extra layer of abstraction
than injecting the HTML does).
Licensed to Maxeta Technologies <account@maxetatech.com>

https://developer.mozilla.org/en/DOM/range.createContextualFragment
https://github.com/tomhuda/metamorph.js/blob/master/lib/metamorph.js

331Injecting HTML into the DOM
 There’s already an API method for injecting arbitrary HTML strings; it was intro-
duced by Internet Explorer, and it’s now part of the W3C HTML 5 specification. This
method exists on all HTML DOM elements and is named insertAdjacentHTML(). See
www.w3.org/TR/html5/apis-in-html-documents.html#insertadjacenthtml. This method
is fairly straightforward to use; somewhat easier-to-digest documentation on it can be
found here: https://developer.mozilla.org/en/DOM/element.insertAdjacentHTML.

 The problem is that we can’t rely on this API across the entire suite of browsers that
we’re likely to support. Even though this method is broadly available in all modern
browsers, it’s a recent addition to most, and it’s likely that some legacy browsers in
your support matrix won’t support this method. Even IE’s implementation in its older
versions was incredibly buggy, only working on a subset of all available elements.

 And even if we had the luxury of supporting only the latest and greatest versions of
the browsers, knowing how to do HTML injection is a skill that a JavaScript ninja
should have tucked into his belt right next to his or her wakizashi.

 For these reasons, we’re going to implement a clean DOM-manipulation API from
scratch. The implementation will involve a number of steps:

1 Convert an arbitrary but valid HTML/XHTML string into a DOM structure.
2 Inject that DOM structure into any location in the DOM as efficiently as possible.
3 Execute any inline scripts that were in the source string.

All together, these three steps will provide a page author with a smart API for injecting
HTML into a document.

 Let’s get started.

14.1.1 Converting HTML to DOM
Converting an HTML string to a DOM structure doesn’t involve a whole lot of magic.
In fact, it uses a tool that you’re most likely already very familiar with: the innerHTML
property of DOM elements.

 Using it is a multi-step process:

1 Make sure that the HTML string contains valid HTML/XHTML (or, to be friendly,
tweak it so that it’s closer to valid).

2 Wrap the string in any enclosing markup that’s required by browser rules.
3 Insert the HTML string, using innerHTML, into a dummy DOM element.
4 Extract the DOM nodes back out.

The steps aren’t overly complex, but the actual insertion has some gotchas that we’ll
need to take into account. Let’s take a look at each step in detail.

PREPROCESSING THE XML/HTML SOURCE STRING

To start, we’ll need to clean up the source HTML to meet our needs. Exactly what’s
involved in this first step will depend upon the product needs and context; for exam-
ple, for the construction of jQuery, it became important to be able to support XML-
style, self-closing elements such as "<table/>".
Licensed to Maxeta Technologies <account@maxetatech.com>

https://developer.mozilla.org/en/DOM/element.insertAdjacentHTML
www.w3.org/TR/html5/apis-in-html-documents.html#insertadjacenthtml

332 CHAPTER 14 Manipulating the DOM
 These self-closing elements only work for a small subset of HTML elements;
attempting to use that syntax in other cases is likely to cause problems in browsers like
Internet Explorer.

 We can do a quick preparse on the HTML string to convert elements like "<table/>" to
"<table></table>" (which will be handled uniformly in all browsers), as shown in the
next listing.

<script type="text/javascript">

 var tags =
 /^(abbr|br|col|img|input|link|meta|param|hr|area|embed)$/i;
 function convert(html) {
 return html.replace(/(<(\w+)[^>]*?)\/>/g, function (all, front, tag) {
 return tags.test(tag) ?
 all :
 front + "></" + tag + ">";
 });
 }

 assert(convert("<a/>") === "<a>", "Check anchor conversion.");
 assert(convert("<hr/>") === "<hr/>", "Check hr conversion.");

</script>

With that accomplished, we need to determine whether the new elements need to be
wrapped or not.

HTML WRAPPING

We now have the start of an HTML string, but there’s another step we need to take
before injecting it into the page. A number of HTML elements must be within certain
container elements before they can be injected. For example, an <option> element
must be within a <select>.

 There are two approaches to solving this problem, both of which require con-
structing a mapping between problematic elements and their containers:

■ The string could be injected directly into a specific parent using innerHTML,
where the parent has been previously constructed using createElement.
Although this may work in some cases in some browsers, it isn’t universally guar-
anteed to work.

■ The string could be wrapped with the appropriate required markup and then
injected directly into any container element (such as a <div>). This is more fool-
proof, but it’s also more work.

The second technique is preferred; it involves very little browser-specific code in con-
trast to the first approach, which would require a fair amount of mostly browser-
specific code.

Listing 14.1 Making sure that self-closing elements are interpreted correctly

Use a regular expression to match the
tag name of any elements we don’t need

to be concerned about

A function that
uses regular

expressions to
convert self-

closing tags to
“normal” form

As always,
test!
Licensed to Maxeta Technologies <account@maxetatech.com>

333Injecting HTML into the DOM
 The set of problematic elements that need to be wrapped in specific container ele-
ments is fortunately a rather manageable seven. In the following list, the ellipses (...)
indicates where the elements need to be injected:

■ <option> and <optgroup> need to be contained in a <select multiple="multiple">
...</select>.

■ <legend> needs to be contained in a <fieldset>...</fieldset>.
■ <thead>, <tbody>, <tfoot>, <colgroup>, and <caption> need to be contained in a

<table>...</table>.
■ <tr> needs to be in a <table><thead>...</thead></table>, <table><tbody>...</tbody>

</table>, or <table><tfoot>...</tfoot></table>.
■ <td> and <th> need to be in a <table><tbody><tr>...</tr></tbody></table>.
■ <col> must be in a <table><tbody></tbody><colgroup>...</colgroup></table>.
■ <link> and <script> need to be in a <div></div><div>...</div>.

Nearly all of these are straightforward, save for the following points, which require a
bit of explanation:

■ A <select> element with the multiple attribute is used (as opposed to a non-
multiple select) because it won’t automatically check any of the options that are
placed inside of it (whereas a single select will autocheck the first option).

■ The <col> fix includes an extra <tbody>, without which the <colgroup> won’t be
generated properly.

■ The <link> and <script> fix is a weird one: Internet Explorer is unable to gener-
ate <link> and <script> elements via innerHTML unless they’re both contained
within another element and there’s an adjacent node.

With the elements properly mapped to their wrapping requirements, let’s start
generating.

GENERATING THE DOM
Using the map of containers from the previous section, we now have enough informa-
tion to generate the HTML that we need to insert into a DOM element.

<script type="text/javascript">

 function getNodes(htmlString, doc) {

 var map = {
 "<td":[3,"<table><tbody><tr>","</tr></tbody></table>"],
 "<th":[3,"<table><tbody><tr>","</tr></tbody></table>"],
 "<tr":[2,"<table><thead>","</thead></table>"],
 "<option":[1,"<select multiple='multiple'>","</select>"],
 "<optgroup":[1,"<select multiple='multiple'>","</select>"],
 "<legend":[1,"<fieldset>","</fieldset>"],

Listing 14.2 Generating a list of DOM nodes from some markup

Map of element types that need special parent
containers. Each entry has the depth of the new

node, opening HTML for the parents,
and closing HTML for the parents. b
Licensed to Maxeta Technologies <account@maxetatech.com>

334 CHAPTER 14 Manipulating the DOM

Uses a
express
match
opening
and tag
of the
to be i

nt in
 new
use a
if it
 the
 not.

Wrap the
incoming
with the
parents f
the map
and injec
the inner
of the n
created

-
e
p
e
e
.

 "<thead":[1,"<table>","</table>"],
 "<tbody":[1,"<table>","</table>"],
 "<tfoot":[1,"<table>","</table>"],
 "<colgroup":[1,"<table>","</table>"],
 "<caption":[1,"<table>","</table>"],
 "<col":[2,"<table><tbody></tbody><colgroup>","</colgroup></table>"],
 "<link":[3,"<div></div><div>","</div>"]
 };

 var tagName = htmlString.match(/<\w+/),
 mapEntry = tagName ? map[tagName0]] : null;
 if (!mapEntry) mapEntry = [0, " ". " "];

 var div = (doc || document).createElement("div");

 div.innerHTML = mapEntry[1] + htmlString + mapEntry[2];

 while (mapEntry[0]--) div = div.lastChild;

 return div.childNodes;
 }

 assert(getNodes("<td>test</td><td>test2</td>").length === 2,
 "Get two nodes back from the method.");
 assert(getNodes("<td>test</td>")[0].nodeName === "TD",
 "Verify that we're getting the right node.");

</script>

There are two browser bugs that we’ll need to work around before we return our node
set, both in Internet Explorer. The first is that IE adds a <tbody> element inside an
empty table: checking to see if an empty table was intended and removing any child
nodes is a sufficient fix. The second is that IE trims all leading whitespace from the
string passed to innerHTML—remember that HTML doesn’t care about whitespace, and
it’s usually not taken into account when browsers render the document. This can be
remedied by checking to see if the first generated node is a text and contains leading
whitespace; if not, create a new text node and fill it with the whitespace explicitly.

 After all of this, we have a set of DOM nodes that we can begin to insert into
the document.

14.1.2 Inserting into the document
Once we have the actual DOM nodes, it’s time to insert them into the document.
There are a couple of steps involved, and we’ll work through them in this section.

 As we have an array of elements that we need to insert—potentially into any num-
ber of locations within the document—we’d like to try and keep the number of opera-
tions that are performed to a minimum.

 We can do this by using DOM fragments. DOM fragments are part of the W3C DOM
specification and are supported in all browsers. This useful facility gives us a container
that we can use to hold a collection of DOM nodes.

 This in itself is quite useful, but it also has the advantage that the fragment can be
injected and cloned in a single operation instead of us having to inject and clone each
individual node over and over again. This has the potential to dramatically reduce the
number of operations required for a page.

regular
ion to
the
 bracket
 name
element
nserted

 c

If it’s in the map, grab
the entry; otherwise

construct a faux entry
with empty “parent”

markup and a
depth of zero. d

Create a <div> eleme
which to create the

nodes. Note that we
passed document

exists, or default to
current document if

 e
markup

rom
entry,
t it as
 HTML
ewly
<div>.

 f
Walk down the just
created tree to th

depth indicated by the ma
entry. This should be th

parent of the desired nod
created from the markup

 g

Return the newly
created element. h
Licensed to Maxeta Technologies <account@maxetatech.com>

335Injecting HTML into the DOM
 Before we use this mechanism in our code, let’s revisit the getNodes() code of list-
ing 14.2 and adjust it a tad to make use of DOM fragments. The changes are minor and
consist of adding a fragment parameter to the function’s parameter list, as follows:

function getNodes(htmlString, doc, fragment) {

This parameter, if it’s passed, is expected to be a DOM fragment that we want the
nodes to be injected into for later use.

 To do so, we simply add the following fragment just before the return statement of
the function to add the nodes to the passed fragment:

if (fragment) {
 while (div.firstChild) {
 fragment.appendChild(div.firstChild);
 }
}

Now, let’s see it in use.
 In the following listing, derived from the code in jQuery, which assumes that the

updated getNodes() function is in scope, a fragment is created and passed in to that
function (which, you may recall, converts the incoming HTML string into DOM ele-
ments). This DOM is now appended to the fragment.

<div id="test">Hello, I'm a ninja!</div>
<div id="test2"></div>

<script type="text/javascript">

 window.onload = function () {
 function insert(elems, args, callback) {
 if (elems.length) {
 var doc = elems[0].ownerDocument || elems[0],
 fragment = doc.createDocumentFragment(),
 scripts = getNodes(args, doc, fragment),
 first = fragment.firstChild;

 if (first) {
 for (var i = 0; elems[i]; i++) {
 callback.call(root(elems[i], first),
 i > 0 ? fragment.cloneNode(true) : fragment);
 }
 }
 }
 }

 var divs = document.getElementsByTagName("div");

 insert(divs, ["Name:"], function (fragment) {
 this.appendChild(fragment);
 });

 insert(divs, ["First Last"],
 function (fragment) {

Listing 14.3 Inserting a DOM fragment into multiple locations in the DOM
Licensed to Maxeta Technologies <account@maxetatech.com>

336 CHAPTER 14 Manipulating the DOM
 this.parentNode.insertBefore(fragment, this);
 });
 };

</script>

There’s another important point here: if we’re inserting this element into more than
one location in the document, we’re going to need to clone this fragment again and
again. If we weren’t using a fragment, we’d have to clone each individual node every
time, instead of the whole fragment at once.

 There’s one final point that we’ll need to take care of, albeit a relatively minor one.
When page authors attempt to inject a table row directly into a table element, they
normally mean to insert the row directly into the <tbody> that’s in the table. We can
write a simple mapping function to take care of that for us.

<script type="text/javascript">

 function root(elem, cur) {
 return elem.nodeName.toLowerCase() === "table" &&
 cur.nodeName.toLowerCase() === "tr" ?
 (elem.getElementsByTagName("tbody")[0] ||
 elem.appendChild(elem.ownerDocument.createElement("tbody"))) :
 elem;
 }

</script>

Altogether, we now have a way to both generate and insert arbitrary DOM elements in
an intuitive manner. But what about scripting elements that are embedded in the
source string?

14.1.3 Script execution

In addition to the insertion of structural HTML into a document, a common require-
ment is the execution of inline script elements. This scenario is quite common when
an HTML fragment is returned as an Ajax response from a server and there’s script
that needs to be executed along with the HTML itself.

 Usually the best way to handle inline scripts is to strip them out of the DOM structure
before they’re inserted into the document. In the function that’s used to convert the
HTML into a DOM node, we could use something like the following code from jQuery.

for (var i = 0; ret[i]; i++) {
 if (jQuery.nodeName(ret[i], "script") &&
 (!ret[i].type ||
 ret[i].type.toLowerCase() === "text/javascript")) {
 scripts.push(ret[i].parentNode ?
 ret[i].parentNode.removeChild(ret[i]) :
 ret[i]);

Listing 14.4 Figure out the insertion point of an element

Listing 14.5 Collecting the scripts
Licensed to Maxeta Technologies <account@maxetatech.com>

337Injecting HTML into the DOM
 } else if (ret[i].nodeType === 1) {
 ret.splice.apply(ret, [i + 1, 0].concat(
 jQuery.makeArray(ret[i].getElementsByTagName("script"))));
 }
}

The code in this listing deals with two arrays: ret, which holds all the DOM nodes that
have been generated, and scripts, which becomes populated with all the scripts in
this fragment, in document order. Additionally, the code takes care to only remove
scripts that are normally executed as JavaScript (those without an explicit type or
those with a type of text/javascript). Then, after the DOM structure is inserted into
the document, the code takes the contents of scripts and evaluates it. It’s more about
shuffling things around than intricate code, but it does lead us to a tricky part.

GLOBAL CODE EVALUATION

When inline scripts are included for execution, it’s expected that they will be evalu-
ated within the global context. This means that if a variable is defined, it should
become a global variable; the same applies to any functions.

 The standard methods for code evaluation are spotty, at best. The one foolproof
way to execute code in the global scope, across all browsers, is to create a fresh script
element, inject the code you wish to execute inside the script, and then quickly inject
and remove the script from the document. This is a technique that we discussed back
in section 9.1. This will cause the browser to execute the inner contents of the script
element within the global scope.

 The following listing shows a part of the global evaluation code that’s in jQuery.

<script type="text/javascript">

 function globalEval(data) {
 data = data.replace(/^\s+|\s+$/g, "");

 if (data) {
 var head = document.getElementsByTagName("head")[0] ||
 document.documentElement,
 script = document.createElement("script");

 script.type = "text/javascript";
 script.text = data;

 head.insertBefore(script, head.firstChild);
 head.removeChild(script);
 }
 }

</script>

Using this method, it becomes easy to rig up a generic way to evaluate a script ele-
ment. We can even add in some simple code for dynamically loading in a script (if it
references an external URL) and evaluating that as well.

Listing 14.6 Evaluate a script within the global scope
Licensed to Maxeta Technologies <account@maxetatech.com>

338 CHAPTER 14 Manipulating the DOM
<script type="text/javascript">

 function evalScript(elem) {
 if (elem.src)
 jQuery.ajax({
 url:elem.src,
 async:false,
 dataType:"script"
 });

 else
 jQuery.globalEval(elem.text || "");

 if (elem.parentNode)
 elem.parentNode.removeChild(elem);
 }

</script>

After we’re done evaluating the script, we remove it from the DOM. We did the same
thing earlier when we removed the script element before it was injected into the docu-
ment. We do this so that scripts won’t accidentally be doubly executed (appending a
script to a document, which ends up recursively calling itself, for example).

 To our ninja toolkit we’ve added the ability to add new elements to the DOM. Now
let’s see how we can copy new elements from previously existing ones.

14.2 Cloning elements
Cloning an element (using the DOM cloneNode method) is straightforward in all
browsers, except legacy Internet Explorer. Legacy versions of IE have troubling behav-
iors that, when they occur in conjunction, result in a very frustrating scenario for han-
dling cloning.

 First, when cloning an element, IE copies over all event handlers to the cloned ele-
ment. Additionally, any custom expandos attached to the element are also carried
over. In jQuery, the following simple test determines if this is the case.

<script type="text/javascript">

 var div = document.createElement("div");

 if (div.attachEvent && div.fireEvent) {
 div.attachEvent("onclick", function () {
 jquery.support.noCloneEvent = false;
 div.detachEvent("onclick", arguments.callee);
 });
 div.cloneNode(true).fireEvent("onclick");
 }

</script>

Listing 14.7 A method for evaluating a script (even if it’s remotely located)

Listing 14.8 Determining if a browser copies event handlers on cloning

Cloning a node shouldn’t copy
over any bound event handlers.

(IE does this.)
Licensed to Maxeta Technologies <account@maxetatech.com>

339Cloning elements
Second, the obvious way to prevent this would be to remove the event handler from
the cloned element. But in Internet Explorer, if you remove an event handler from a
cloned element, it gets removed from the original element as well. Fun stuff!

 Naturally, any attempts to remove custom expando properties on the clone will
cause them to be removed on the original cloned element as well.

 Finally, the solution to all of this might be to just clone the element, inject it into
another element, read the innerHTML of the element, and convert that back into a DOM
node. It’s a multistep process, but one that’ll result in an untainted cloned element.
Except (sigh), there’s another IE bug: the innerHTML (and outerHTML, for that matter) of
an element doesn’t always reflect the correct state of an element’s attributes. One
common place where this is seen is when the name attribute of an input element is
changed dynamically. The new value isn’t represented in innerHTML.

 This solution has another caveat: innerHTML doesn’t exist on XML DOM elements, so
we’re forced to go with the traditional cloneNode call (thankfully, though, event listen-
ers on XML DOM elements are pretty rare).

 The final solution for Internet Explorer ends up being quite circuitous. Instead of
a quick call to cloneNode, it’s instead serialized by innerHTML, extracted again as a DOM
node, and then monkey-patched for any particular attributes that didn’t carry over.
How much monkeying you want to do with the attributes is really up to you.

<script type="text/javascript">

 function clone() {
 var ret = this.map(function () {
 if (!jQuery.support.noCloneEvent && !jQuery.isXMLDoc(this)) {
 var clone = this.cloneNode(true),
 container = document.createElement("div");
 container.appendChild(clone);
 return jQuery.clean([container.innerHTML])[0];
 }
 else
 return this.cloneNode(true);
 });

 var clone = ret.find("*").andSelf().each(function () {
 if (this[expando] !== undefined)
 this[expando] = null;
 });

 return ret;
 }

</script>

Note that the preceding code uses jQuery’s jQuery.clean method, which converts an
HTML string into a DOM structure (as was discussed previously).

 OK, we’ve added new elements and copied elements. How do we get rid of them?

Listing 14.9 A portion of the element clone code from jQuery
Licensed to Maxeta Technologies <account@maxetatech.com>

340 CHAPTER 14 Manipulating the DOM
14.3 Removing elements
Removing an element from the DOM should be simple (a quick call to removeChild()),
but of course it isn’t. We have to do a lot of preliminary cleaning up before we can
actually remove an element from the DOM.

 There are usually two steps of cleanup that need to occur on a DOM element
before it can be removed from the DOM.

 The first things to clean up are any bound event handlers by removing them from
the element. If a framework is designed well, it should only be binding a single han-
dler for an element at a time, so the cleanup shouldn’t be any harder than removing
that one function. This is exactly how we set up our event management framework in
chapter 13. This step is very important because Internet Explorer will leak memory
should the handler function reference any DOM elements.

 The second step in the cleanup is removing any external data associated with the ele-
ment. Just as we discussed in chapter 13, a framework needs a good way to associate
pieces of data with an element without directly attaching the data as an expando prop-
erty. It’s a good idea to clean up this data so that it doesn’t consume any more memory.

 Both of these points need to be done on the element that’s being removed, as
well as on all descendant elements, because all the descendant elements are also
being removed.

 The following listing shows the relevant code from jQuery.

<script type="text/javascript">

 function remove() {

 jQuery("*", this).add([this]).each(function () {

 jQuery.event.remove(this);

 jQuery.removeData(this);
 });

 if (this.parentNode)
 this.parentNode.removeChild(this);
 }

</script>

The next thing to consider, after all the cleaning up is done, is the actual removal of the
element from the DOM. Most browsers are perfectly fine with the removal of the element
from the page (with the exception of Internet Explorer, as described previously).

 In IE, every single element removed from the page fails to reclaim some portion of
its used memory, until the page is finally left. This means that long-running pages that
remove a lot of elements from the page will find themselves using considerably more
memory in Internet Explorer as time goes on.

Listing 14.10 The remove element function from jQuery

Traverses all descendants
and elements to be removed

Removes all bound
elements

Removes
attached data

Removes element if
it’s in the DOM
Licensed to Maxeta Technologies <account@maxetatech.com>

341Text contents
 There’s one partial solution that seems to work quite well. IE has a proprietary
property called outerHTML that gives us an HTML string representation of an element.
For whatever reason, outerHTML is also a setter in addition to a getter. As it turns out, if
we execute the following,

outerHTML = "";

it will wipe out the element from IE’s memory more completely than simply doing
removeChild().

 We can do this step in addition to the normal removeChild() call.

if (this.parentNode)
 this.parentNode.removeChild(this);

if (typeof this.outerHTML !== "undefined")
 this.outerHTML = "";

It should be noted that outerHTML isn’t successful in reclaiming all of the memory that
was used by the element, but it reclaims most of it (which is a start).

 It’s important to remember that whenever an element is removed from the page,
you should go through the preceding three steps, at the very least. This includes emp-
tying out the contents of an element, replacing the contents of an element (with
either HTML or text), and replacing an element directly. Remember to always keep
your DOM tidy, and you won’t have to worry so much about memory issues later on.

 That covers HTML elements pretty well, but a page consists of more than just ele-
ments. We also need to consider page text.

14.4 Text contents
Working with text tends to be much easier than working with HTML elements, espe-
cially as there are built-in methods that work in all browsers for text content. But as
usual, there are all sorts of browser bugs that we end up having to work around, so
these APIs aren’t the complete solution we’d like them to be.

 When it comes to dealing with text, there are two common scenarios:

■ Getting the text content of an element
■ Setting the text content of an element

W3C-compliant browsers conveniently provide a textContent property on their DOM
elements. Accessing the contents of this property gives you the textual contents of the
element, including its direct children and descendant nodes.

 Legacy Internet Explorer has its own property, innerText, for performing the same
behavior as textContent. (Just to be nice, some browsers, such as WebKit-based brows-
ers, also support innerText.)

 Consider the following code.

Listing 14.11 Setting outerHTML in an attempt to reclaim more memory in Internet Explorer

Removes element if
it’s in the DOM
Licensed to Maxeta Technologies <account@maxetatech.com>

342 CHAPTER 14 Manipulating the DOM
<div id="test">Hello, I'm a ninja!</div>

<script type="text/javascript">

 window.onload = function () {
 var b = document.getElementById("test");
 var text = b.textContent || b.innerText;

 assert(text === "Hello, I’m a ninja!",
 "Examine the text contents of an element.");
 assert(b.childNodes.length === 2,
 "An element and a text node exist.");

 if (typeof b.textContent !== "undefined") {
 b.textContent = "Some new text";
 }
 else {
 b.innerText = "Some new text";
 }

 text = b.textContent || b.innerText;

 assert(text === "Some new text", "Set a new text value.");
 assert(b.childNodes.length === 1,
 "Only one text node exists now.");
 };

</script>

Note that when we set the textContent/innerText properties, the original element
structure is removed. So while both of these properties are very useful, there are a cer-
tain number of gotchas.

 First, as we discussed while removing elements from the page, not having any sort
of special consideration for element memory leaks will come back to bite us later on.
Additionally, the cross-browser handling of whitespace is absolutely abysmal in these
properties. No browser appears capable of returning consistent results.

 If you don’t care about preserving whitespace (especially end lines), feel free to
use textContent/innerText for accessing the element’s text value. For setting the value
though, we’ll need to devise an alternative solution.

14.4.1 Setting text
Setting a text value involves two steps:

1 Emptying out the contents of the element
2 Inserting the new text contents in its place

Emptying out the contents is straightforward; we’ve already devised a solution in list-
ing 14.10.

 To insert the new text contents, we’ll need to use a method that’ll properly escape
the string we’re about to insert. An important difference between inserting HTML and
inserting text is that the inserted text will need to have any problematic HTML-specific
characters escaped. For example < must appear as the HTML entity <.

Listing 14.12 Using textContent and innerText
Licensed to Maxeta Technologies <account@maxetatech.com>

343Text contents
 Luckily, we can use the built-in createTextNode() method, available on DOM docu-
ments, to do precisely that, as shown in the next listing.

<div id="test">Hello, I’m a ninja!</div>

<script type="text/javascript">
 window.onload = function () {
 var b = document.getElementById("test");

 while (b.firstChild)
 b.removeChild(b.firstChild);

 b.appendChild(document.createTextNode("Some new text"));

 var text = b.textContent || b.innerText;

 assert(text === "Some new text", "Set a new text value.");
 assert(b.childNodes.length === 1,
 "Only one text nodes exists now.");
 };
</script>

We’ve set; now let’s get.

14.4.2 Getting text

To get the accurate text value of an element, we have to ignore the results from text-
Content and innerText. The most common problem with these properties is related to
end lines being unnecessarily stripped from the returned result. Instead we must col-
lect all the text node values manually to get an accurate result.

 The following code is a possible solution that makes good use of recursion.

<div id="test">Hello, I’m a ninja!</div>

<script>
 window.onload = function () {
 function getText(elem) {
 var text = "";

 for (var i = 0; i < elem.childNodes.length; i++) {
 var cur = elem.childNodes[i];

 if (cur.nodeType === 3)
 text += cur.nodeValue;

 else if (cur.nodeType === 1)
 text += getText(cur);
 }

 return text;
 }

 var b = document.getElementById("test");
 var text = getText(b);

Listing 14.13 Setting the text contents of an element

Listing 14.14 Getting the text contents of an element

You can replace this
with your empty()
method of choice

Injects escaped
text node

Text nodes have a
nodeType of 3

We need to recurse
further if it’s an
element
Licensed to Maxeta Technologies <account@maxetatech.com>

344 CHAPTER 14 Manipulating the DOM
 assert(text === "Hello, I’m a ninja!",
 "Examine the text contents of an element.");
 assert(b.childNodes.length === 2,
 "An element and a text node exist.");
 };
</script>

In our applications, when we can get away with not worrying about whitespace, we
should definitely stick with the textContent/innerText properties, as they make our
lives so much simpler. But it’s nice to have a fallback for when those properties don’t
cut the mustard.

14.5 Summary
We’ve taken a comprehensive look at the best ways to tackle the difficult problems sur-
rounding DOM manipulation. While modern browsers give us some newer options for
DOM manipulation, knowing how to do it “by hand” is important to provide support
for legacy browsers and improve performance.

 These problems should be easier to overcome than they are, but cross-browser
issues make implementing solutions much more difficult than it should be. With a lit-
tle bit of extra work, we can have a unified solution that will work well in all major
browsers, which is exactly what we should strive for.

 Let’s review what we’ve learned in this chapter:

■ Using regular expressions, a handy tool we mastered in chapter 7, we can cajole
HTML snippets into a well-formed syntax that we can parse.

■ Injecting a fragment of HTML text into a temporary element’s innerHTML prop-
erty is a quick and easy way to convert a string of HTML text into DOM elements.

■ Some elements, such as table component elements, need to be wrapped with
certain other container elements in order for them to be properly created.

■ Script elements in HTML fragments can be executed in the global scope using
the techniques that we examined in chapter 9 on code evaluation.

■ Legacy versions of Internet Explorer cause headaches when cloning nodes
because they copy too much, including event handlers and expandos.

■ We need to be mindful of memory management needs when removing ele-
ments from the DOM, especially when creating long-lived pages.

In this chapter, we’ve created, cloned, and removed elements. What about finding
them? In the next chapter we’ll consider the final subject in your ninja training: locat-
ing elements via CSS selectors.
Licensed to Maxeta Technologies <account@maxetatech.com>

CSS selector engines
The good news is that we, as web development professionals, are well into the age
in which the W3C Selectors API exists in all modern browsers. This API (which has
two levels: Level 1 and Level 2) provides us with the querySelectorAll() and query-
Selector() methods, along with other goodies that we can use in our applications to
write very fast DOM traversals in relatively cross-browser ways.

NOTE Want more info on this API? See the W3C pages for Level 1 (www.w3
.org/TR/selectors-api/) and Level 2 (www.w3.org/TR/selectors-api2/).

You might ask, as the W3C Selectors API has been implemented in virtually all mod-
ern browsers, why do we need to spend time discussing how a pure JavaScript CSS
selector engine is implemented?

This chapter covers
■ The current status of browser

selector support
■ Strategies for selector engine construction
■ Using the W3C API
■ Some info on XPath
■ Building a DOM selector engine
345

Licensed to Maxeta Technologies <account@maxetatech.com>

www.w3.org/TR/selectors-api/
www.w3.org/TR/selectors-api/
www.w3.org/TR/selectors-api2/

346 CHAPTER 15 CSS selector engines
 Although the addition of the standard API is a good thing, the implementation of
the W3C Selectors API in most browsers (at least in their mid-2012 state) is rather a shoe-
horning of existing internal CSS selector engines into the standardized JavaScript/DOM
realm. To make this happen, a number of niceties that one would typically associate
with a good API were set aside. For example, the methods don’t make use of already-
constructed DOM caches, they don’t provide good error reporting, and they’re unable
to handle any form of extensibility.

 The CSS selector engines in popular JavaScript libraries have taken into account all
of these factors. They use DOM caches to provide faster performance, they provide
extra levels of error reporting, and they’re highly extensible.

TIP If you’re wondering what a “CSS selector engine” is, it’s simply a grandi-
ose term for functionality that matches a set of DOM elements given a CSS
selector expression. For example, all elements that have the class ninja can be
collected with the selector expression .ninja.

All this being said, the question remains: why should you understand how a pure
JavaScript CSS selector engine works? The answer is that understanding how a
pure-JavaScript CSS selector engine works can yield some rather astonishing perfor-
mance gains. Not only will we be able to write better traversal implementations,
allowing us to search through a DOM tree even faster, but we’ll also learn to sculpt
our CSS selectors to adapt to how the CSS selector engines work, giving us even
more performant selectors.

 CSS selector engines are a part of everyday development in this day and age, and
understanding how they work, and how to make them work even faster, will give us a
fundamental leg up in our development. After all, if you think about the types of
things that we need to do in on-page scripts, a lot of it follows this pattern:

1 Find DOM elements.
2 Do something to or with them.

Excepting the new Selectors API, finding DOM elements has never been a strong point
of in-browser JavaScript; the methods available to locate elements were pretty much
limited to finding elements by ID values and tag names. Anything we can do to make
that first step easier will let us focus on the more interesting “do something” step.

 It’s standard, at this point in time, for selector engines to implement CSS3 selec-
tors, as defined by the W3C and shown at www.w3.org/TR/css3-selectors/.

 With regard to approach, there are three primary ways of implementing a CSS
selector engine:

■ Using the previously mentioned W3C Selectors API, as implemented in most
modern browsers

■ Using XPath, a DOM-querying language built into a variety of modern browsers
■ Using pure DOM, a staple of CSS selector engines, which allows for graceful deg-

radation if either of the first two mechanisms doesn’t exist
Licensed to Maxeta Technologies <account@maxetatech.com>

www.w3.org/TR/css3-selectors/

347The W3C Selectors API
This chapter will explore all of these strategies in depth, allowing us to make some
educated decisions about implementing, or at least understanding, a JavaScript CSS
selector engine.

 We’ll start with the W3C approach.

15.1 The W3C Selectors API
The W3C Selectors API is a comparatively new API that’s designed to reduce much of
the work that it takes to implement a full CSS selector engine in JavaScript.

 Browser vendors have pounced on this new API, and it’s implemented in all major
modern browsers (starting in Safari 3, Firefox 3.1, Internet Explorer 8, Chrome
(pretty much since inception), and Opera 10). Implementations of the API generally
support all selectors implemented by the browser’s CSS engine, so if a browser has full
CSS3 support, its Selectors API implementation will reflect that.

 This API provides a number of useful methods, two of which are implemented in
modern browsers:

■ querySelector() accepts a CSS selector string and returns the first element
found, or null if no matching element is found.

■ querySelectorAll() accepts a CSS selector string and returns a static NodeList of
all elements found by the selector.

These two methods exist on all DOM elements, DOM documents, and DOM fragments.
 The following listing shows a couple of examples of how it could be used.

<div id="test">
 Hello, I'm a ninja!
</div>
<div id="test2"></div>

<script type="text/javascript">

 window.onload = function () {
 var divs = document.querySelectorAll("body > div");
 assert(divs.length === 2, "Two divs found using a CSS selector.");

 var b = document.getElementById("test")
 .querySelector("b:only-child");
 assert(b,
 "The bold element was found relative to another element.");
 };

</script>

Perhaps the one gotcha that exists with the current W3C Selectors API is that it’s lim-
ited to supporting CSS selectors that are supported by the browser, rather than the
wider-ranging implementations that were first created by JavaScript libraries. This can
be seen in the matching rules of element-rooted queries (calling either querySelector()
or querySelectorAll() relative to an element).

Listing 15.1 Examples of the Selectors API in action

Finds <div> elements
that are children of

the body

Finds only children
who are bold!
Licensed to Maxeta Technologies <account@maxetatech.com>

348 CHAPTER 15 CSS selector engines

D
f
i
c

<div id="test">
 Hello, I'm a ninja!
</div>

<script type="text/javascript">
 window.onload = function () {
 var b = document.getElementById("test").querySelector("div b");
 assert(b, "Only the last part of the selector matters.");
 };
</script>

Note the issue here: when performing an element-rooted query, the selector only
checks to see if the final portion of the selector is contained within the element. This
will probably seem counterintuitive. In listing 15.2, we can verify that there are no
<div> elements within the element with an id of test, even though that’s what the
selector looks like it’s verifying.

 This runs counter to how most users expect a CSS selector engine to work, so we’ll
have to provide a workaround. The most common solution is to add a new id to the
rooted element to enforce its context.

<div id="test">
 Hello, I'm a ninja!
</div>

<script type="text/javascript">
 (function() {

 var count = 1;

 this.rootedQuerySelectorAll = function (elem, query) {
 var oldID = elem.id;
 elem.id = "rooted" + (count++);

 try {
 return elem.querySelectorAll("#" + elem.id + " " + query);
 }
 catch (e) {
 throw e;
 }
 finally {
 elem.id = oldID;
 }
 };
 })();

 window.onload = function () {
 var b = rootedQuerySelectorAll(
 document.getElementById("test"), "div b");
 assert(b.length === 0, "The selector is now rooted properly.");
 };
</script>

Listing 15.2 Element-rooted queries

Listing 15.3 Enforcing the element root

Immediate function binds count variable to
rootedQuerySelectorAll() function

efines
unction
n global
ontext

Remembers the original
id; we’ll be putting it

back later

Assigns a uniquely
generated temporary

id value

Restores the original id
in a finally block so that
there’s no way it can be
circumvented
Licensed to Maxeta Technologies <account@maxetatech.com>

349Using XPath to find elements
There are a couple of important points in listing 15.3.
 To start, we must assign a unique id to the element and restore the old id later.

This will ensure that there are no collisions in our final result when we build the selec-
tor. We then prepend this id (in the form of an "#id " selector, where id is the
uniquely generated value) to the selector.

 Normally this process would be as simple as removing the id and returning the
result from the query, but there’s a catch: Selectors API methods can throw excep-
tions (most commonly seen for selector syntax issues or unsupported selectors).
Because of this, we’ll want to wrap our selection in a try/catch block. But because we
want to restore the id, we can add an extra finally block. This is an interesting fea-
ture of the language: even though we’re returning a value in the try, or throwing an
exception in the catch, the code in the finally block will always execute after both of
them are done executing (but before the value is returned from the function). In
this manner we can verify that the id will always be restored properly.

 The Selectors API is absolutely one of the most promising APIs to come out of the
W3C in recent history. It has the potential to completely replace a large portion of
most JavaScript libraries with a simple method, after the supporting browsers gain a
dominant market share and support the totality (or at least majority) of CSS3.

 Let’s now turn our attention to a more XML-centric way of approaching the issue.

15.2 Using XPath to find elements
A unified alternative to using the Selectors API (for browsers that don’t support it) is
the use of XPath querying.

 XPath is a querying language used to find nodes in a DOM document. It’s signifi-
cantly more powerful than traditional CSS selectors, and most popular browsers (Fire-
fox, Safari 3+, Opera 9+, Chrome) provide some implementation of XPath that can be
used against HTML-based DOM documents. Internet Explorer 6 and onward provide
XPath support for XML documents (but not for HTML documents—the most com-
mon target).

 If there’s one thing that can be said for utilizing XPath expressions, it’s that
they’re quite fast for complicated expressions. When implementing a pure-DOM
implementation of a selector engine, we’re constantly at odds with the ability of a
browser to scale all the JavaScript and DOM operations. On the other hand, XPath
loses out for simple expressions.

 There’s a certain indeterminate threshold at which it becomes more beneficial
to use XPath expressions instead of pure DOM operations. While this threshold
might be determined programmatically, there are a few givens: finding elements by id
and simple tag-based selectors (<div>) will always be faster with pure-DOM code (using
getElementById() and getElementsByTagName()).

 If our intended audience is comfortable using XPath expressions (and is happy
limiting themselves to the modern browsers that support it) then we can utilize the
Licensed to Maxeta Technologies <account@maxetatech.com>

350 CHAPTER 15 CSS selector engines
method shown in the following listing (from the Prototype library) and completely
ignore everything else about building a CSS selector engine.

if (typeof document.evaluate === "function") {
 function getElementsByXPath(expression, parentElement) {
 var results = [];
 var query = document.evaluate(expression,
 parentElement || document,
 null, XPathResult.ORDERED_NODE_SNAPSHOT_TYPE, null);
 for (var i = 0, length = query.snapshotLength; i < length; i++)
 results.push(query.snapshotItem(i));
 return results;
 }
}

But while it would be nice to use XPath for everything, it simply isn’t feasible. XPath,
while feature-packed, is designed to be used by developers and is prohibitively com-
plex in comparison to the expressions that CSS selectors make easy. We can’t look at
the entirety of XPath here, but table 15.1 offers a quick look at some of the most com-
mon XPath expressions and how they map to CSS selectors.

We could use XPath expressions to create a selector engine, rather than constructing a
pure-DOM selector engine, by parsing the selector using regular expressions. The
important difference is that the resulting CSS selector portions would get mapped to
their associated XPath expressions and executed.

 This approach doesn’t hold many advantages because the result is, code-wise,
about as large as a normal pure-DOM CSS selector engine implementation. Many
developers opt to not utilize an XPath engine simply to reduce the complexity of their

Listing 15.4 A method for executing an XPath expression on an HTML document

Table 15.1 CSS selectors and their equivalent XPath expressions

Goal XPath CSS3

All elements //* *

All elements named p //p p

All immediate child elements of p //p/* p > *

Element by ID //*[@id='foo'] #foo

Element by Class //*[contains(concat(" ",
@class, "")," foo ")]

.foo

Element with attribute //*[@title] *[title]

First child of all p //p/*[0] p > *:first-child

All p with an a descendant //p[a] Not possible

Next element //p/following-sibling::*[0] p + *
Licensed to Maxeta Technologies <account@maxetatech.com>

351The pure-DOM implementation
resulting engines. You’ll need to weigh the performance benefits of an XPath engine
(especially taking into consideration the competition from the Selectors API) against
the inherent code size that it will exhibit.

 And now for the “rolling up our sleeves” approach...

15.3 The pure-DOM implementation
At the core of every CSS selector engine is a pure-DOM implementation. This entails
parsing the CSS selectors and using the existing DOM methods (such as getElement-
ById() and getElementsByTagName()) to find the corresponding elements.

TIP HTML5 adds getElementsByClassName() to the set of available stan-
dard methods.

It’s important to have a DOM implementation of a CSS selector engine for a number
of reasons:

■ Internet Explorer 6 and 7—While Internet Explorer 8 and 9 have support for query-
SelectorAll(), the lack of XPath or Selectors API support in IE 6 and 7 make a
DOM implementation necessary.

■ Backwards compatibility—If you want your code to degrade in a graceful manner
and support browsers that don’t support the Selectors API or XPath (like Safari 2),
you’ll need some form of DOM implementation.

■ Speed—There are a number of selectors that a pure-DOM implementation can
do faster (such as finding elements by ID).

■ Complete coverage—Not all browsers support the same set of CSS3 selectors. If we
want to support the complete set—or at least a common subset—of supported
selectors across all browsers, we need to roll our own.

With that in mind, we can take a look at the two possible CSS selector engine imple-
mentations: top down and bottom up.

 A top-down engine works by parsing a CSS selector from left to right, matching ele-
ments in a document as it goes, working relatively for each additional selector seg-
ment. This type of engine can be found in most modern JavaScript libraries and is,
generally, the preferred means of finding elements on a page.

 Let’s take a simple example. Consider this markup:

<body>

 <div></div>
 <div class="ninja">
 Please Click me!
 </div>

</body>

If we wished to select the element containing the text “Click me!”, we could do
so with this selector:

div.ninja a span
Licensed to Maxeta Technologies <account@maxetatech.com>

352 CHAPTER 15 CSS selector engines
The top-down approach to applying this selector to the DOM is depicted in figure 15.1.
 The first term, div.ninja, identifies a subtree within the document B. Within that

subtree, the next term, a, is applied, identifying the subtree rooted at the anchor ele-
ment c. Finally, the span term identifies the target node d. Note that this is a simpli-
fied example. Multiple subtrees can be identified at any stage.

 There are two important considerations to take into account when developing a
selector engine:

■ The results should be in document order (the order in which they’ve been
defined).

■ The results should be unique (no duplicate elements should be returned).

Because of these gotchas, developing a top-down engine can be rather tricky.
 Let’s take a look at a simplified, top-down implementation, limited to finding ele-

ments by their tag names.

<div>
 <div>
 Span
 </div>
</div>

<script type="text/javascript">

Listing 15.5 A limited, top-down selector engine

Figure 15.1 Top-down selector engines work from the top of the document, locating
sub-trees matching the terms of the selector

div.ninja

a

span

"Click me!"

"Please "

Top down

1

2

3

document

div
div

class=ninja

span a

span
Licensed to Maxeta Technologies <account@maxetatech.com>

353The pure-DOM implementation
 window.onload = function(){
 function find(selector, root){

 root = root || document;

 var parts = selector.split(" "),
 query = parts[0],
 rest = parts.slice(1).join(" "),
 elems = root.getElementsByTagName(query),
 results = [];

 for (var i = 0; i < elems.length; i++) {
 if (rest) {
 results = results.concat(find(rest, elems[i]));
 }
 else {
 results.push(elems[i]);
 }
 }

 return results;
 };

 var divs = find("div");
 assert(divs.length === 2, "Correct number of divs found.");

 var divs = find("div", document.body);
 assert(divs.length === 2,
 "Correct number of divs found in body.");

 var divs = find("body div");
 assert(divs.length === 2,
 "Correct number of divs found in body.");

 var spans = find("div span");
 assert(spans.length === 2, "A duplicate span was found.");
 };

</script>

In this listing we implemented a limited, top-down selector engine that’s only capable
of finding elements by tag name. The engine breaks down into a few parts: parsing the
selector, finding the elements, filtering, and recursing and merging the results.

 We’ll take a closer look at each task in turn.

15.3.1 Parsing the selector

In our simplified example, our parsing was limited to converting a trivial CSS selector
composed of tag names, such as "div span", into an array of strings, with this result:
["div", "span"].

 This example simply broke the string apart on space delimiters, but CSS2 and 3
introduced the ability to find elements by attribute or attribute values, so it’s possible
to have additional spaces in most selectors. This makes our tactic of splitting the selec-
tor on spaces too simplistic.

 For a full implementation, we’d want to have a solid series of parsing rules to han-
dle any expressions that may be thrown at us; these rules would most likely take the

If no root provided,
starts at the top of
the document

Splits the selector on spaces, grabs
the first term, collects the remainder,

finds the element matching the first
term, and initializes an array to gather

the results within

Calls find() recursively
until all the selectors

are consumedPushes found elements
onto results array

Returns list of
matched elements
Licensed to Maxeta Technologies <account@maxetatech.com>

354 CHAPTER 15 CSS selector engines
form of regular expressions. The following example shows a more robust parser using
a regular expression that’s capable of capturing portions of a selector and breaking it
into pieces (and splitting on commas, if need be).

<script type="text/javascript">

 var selector = "div.class > span:not(:first-child) a[href]"

 var chunker = /((?:\([^\)]+\)|\[[^\]]+\]|[^ ,\(\[]+)+)(\s*,\s*)?/g;

 var parts = [];

 chunker.lastIndex = 0;

 while ((m = chunker.exec(selector)) !== null) {
 parts.push(m[1]);

 if (m[2]) {
 extra = RegExp.rightContext;
 break;
 }
 }

 assert(parts.length == 4,
 "Our selector is broken into 4 unique parts.");
 assert(parts[0] === "div.class", "div selector");
 assert(parts[1] === ">", "child selector");
 assert(parts[2] === "span:not(:first-child)", "span selector");
 assert(parts[3] === "a[href]", "a selector");

</script>

Obviously, this chunking selector is only one piece of the puzzle. We’ll need to have
additional parsing rules for each type of expression that we want to support. Most
selector engines end up containing a map of regular expressions to functions; when a
match is made on the selector portion, the associated function is executed.

 Going over such expressions in detail would take far too long here. If you really
want to dig into how it’s done, we encourage you to grab the source code of jQuery or
your favorite library and look though the selector-parsing code.

 Next, we need to find the elements that match the parsed expression.

15.3.2 Finding the elements

Finding the correct elements on the page is a piece of the puzzle that has many solu-
tions. Which techniques are used depends a lot on which selectors are being sup-
ported and what is available from the browser. There are a number of obvious
approaches, though.

 Consider getElementById(). Only available on the root node of HTML documents,
this method finds the first element on the page that has the specified id (of which
there should only be one); it is therefore useful for the ID CSS selector: #id. Internet
Explorer and Opera infuriatingly will also find the first element on the page that has

Listing 15.6 A regular expression for breaking apart a CSS selector

Resets the position of
the chunker regexp

(start from beginning)

Collects
the pieces

Stops on
encountering

a comma
Licensed to Maxeta Technologies <account@maxetatech.com>

355The pure-DOM implementation
the same specified name. If we only wish to find elements by id, we’ll need an extra ver-
ification step to exclude elements selected by this “helpful” feature.

 If we wish to find all elements that match a specific id (as is customary in CSS selec-
tors, even though HTML documents are generally only permitted one specific id per
page), we’ll need to either traverse all elements looking for the ones that have the cor-
rect id, or use document.all["id"], which returns an array of all elements that match an
id in the browsers that support it (namely Internet Explorer, Opera, and Safari).

 The getElementsByTagName() method performs the obvious operation: finding ele-
ments that match a specific tag name. It has another purpose, however: finding all
elements within a document or element by using the * tag name. This is especially use-
ful for handling attribute-based selectors that don’t provide a specific tag name, such
as .class or [attr].

 There’s one caveat when finding element comments using *; Internet Explorer will
also return comment nodes in addition to element nodes (for whatever reason, in Inter-
net Explorer, comment nodes have a tag name of ! and are thus returned). A basic level
of filtering will need to be done to make sure that the comment nodes are excluded.

 getElementsByName() is a well-implemented method that serves a single purpose:
finding all elements that have a specific name (such as <input> elements and other form-
control elements that have a name attribute). It’s really useful for implementing the
single selector [name=name].

 The getElementsByClassName() method is a new HTML5 method that’s being imple-
mented by the browsers. It finds elements based upon the contents of their class attri-
bute. This method tremendously speeds up class-selection code.

 Although there are a variety of techniques that can be used for selection, the pre-
ceding methods are the primary tools used to find what we’re looking for on a page.

 Using the results from these methods, we can move on to filtering.

15.3.3 Filtering the set

A CSS expression is generally made up of a number of individual pieces. For example,
the expression div.class[id] has three parts: it will find all div elements that have a
class name of class and have an attribute named id.

 The first step is to identify the root selector we want to begin with. For example, we
can see that div is used, so we can immediately use getElementsByTagName() to retrieve
all <div> elements on the page. We must, then, filter those results down to only
include those that have the specified class and that have an id attribute specified.

 This filtering process is a common feature of most selector implementations. The
contents of these filters primarily deal with attributes or the position of the element
relative to its siblings and other relations:

■ Attribute filtering—This approach is used for accessing the DOM attributes (gen-
erally using the getAttribute() method) and verifying their values. Class filter-
ing (.class) is a subset of this behavior (accessing the className attribute and
checking its value).
Licensed to Maxeta Technologies <account@maxetatech.com>

356 CHAPTER 15 CSS selector engines

Ac
arr
ele
and
a n
con
onl
ele
fr
ori
■ Position filtering—For selectors like :nth-child(even) or :last-child, a combina-
tion of methods is used on the parent element. In browsers that support it,
children is used (IE, Safari, Chrome, Opera, and Firefox 3.1), which contains a
list of all child elements. All browsers have childNodes, which contains a list of
child nodes, including text nodes and comments. By using these two methods,
it becomes possible to do all forms of element position filtering.

Constructing a filtering function serves a dual purpose: we can provide it to the user
as a simple method for testing their elements, and we can quickly check to see if an
element matches a specific selector.

 Let’s now focus on tools to refine our results.

15.3.4 Recursing and merging

As was shown in listing 15.1, selector engines require the ability to recurse (find
descendant elements) and merge the results together. But our initial implementation
was far too simple. We ended up receiving two elements in our results instead
of just one. We need to introduce an additional check to make sure the returned array
of elements contains unique results. Most top-down selector implementations possess
some means of enforcing this uniqueness.

 Unfortunately, there’s no simple way to determine the uniqueness of a DOM ele-
ment, so we need to figure out a way to do it ourselves. The approach we’ll take is to
go through the elements and assign temporary identifying values to them, so that we
can verify whether we’ve already encountered them.

<div id="test">
 Hello, I'm a ninja!
</div>
<div id="test2"></div>

<script type="text/javascript">

 (function(){

 var run = 0;

 this.unique = function(array) {
 var ret = [];

 run++;

 for (var i = 0, length = array.length; i < length; i++) {
 var elem = array[i];

 if (elem.uniqueID !== run) {
 elem.uniqueID = run;
 ret.push(array[i]);
 }
 }

Listing 15.7 Finding the unique elements in an array

Sets up our willing
test subjects.

Defines the unique() function inside an immediate
function to create a closure that will include the
run variable but hide it from the outside world.

cepts an
ay of
ments
 returns
ew array
taining
y unique
ments
om the
ginal array.

Keeps track of which run we’re on. By
incrementing this value each time the

function is called, a unique identifier value
will be used for testing for uniqueness.

Runs through the original array, copying
elements that we haven’t “seen” yet, and
marking them so that we’ll know whether

we’ve “seen” them or not.
Licensed to Maxeta Technologies <account@maxetatech.com>

357The pure-DOM implementation
 return ret;
 };
 })();

 window.onload = function(){
 var divs = unique(document.getElementsByTagName("div"));
 assert(divs.length === 2, "No duplicates removed.");

 var body = unique([document.body, document.body]);
 assert(body.length === 1, "body duplicate removed.");
 };

</script>

This unique() method adds an expando property to all the elements in the array as it
inspects them, marking them as having been “seen.” By the time a complete run-
through is finished, only unique elements will have been copied into the resulting
array. Variations on this technique can be found in almost all libraries.

 For a longer discussion on the intricacies of attaching properties to DOM nodes,
revisit chapter 13 on events.

 The problem we solved with this function specifically resulted from the top-down
approach we employed. Let’s briefly consider an alternative.

15.3.5 Bottom-up selector engine
If you prefer not to have to think about uniquely identifying elements, there’s an alter-
native style of CSS selector engine that doesn’t require it. A bottom-up selector engine
works in the opposite direction of a top-down one.

 For example, given the selector div span, a bottom-up selector engine will first find
all elements, and then, for each element, will navigate up the ancestor ele-
ments to find an ancestor <div> element. This style of selector engine construction
matches the style found in most browser engines.

 This engine style isn’t as popular as the top-down approach. Although it works well
for simple selectors (and child selectors), the ancestor travels end up being quite
costly, and it doesn’t scale very well. But the simplicity that this engine style provides
can end up making for a nice trade-off.

 The construction of the engine is simple. We start by finding the last expression in
the CSS selector and then retrieve the appropriate elements (just like with a top-down
engine, but using the last expression rather than the first). From here on, all operations
are performed as a series of filter operations, removing elements as the operations prog-
ress (see the following listing).

<div>
 <div>
 Span
 </div>
</div>

Listing 15.8 A simple bottom-up selector engine

Returns the resulting array, containing only
references to unique elements.

Tests it! The first test
shouldn’t result in any

removals (as there are no
duplicates passed), but the
second should collapse down

to a single element.
Licensed to Maxeta Technologies <account@maxetatech.com>

358 CHAPTER 15 CSS selector engines
<script type="text/javascript">

 window.onload = function(){
 function find(selector, root){
 root = root || document;

 var parts = selector.split(" "),
 query = parts[parts.length - 1],
 rest = parts.slice(0,-1).join(""),
 elems = root.getElementsByTagName(query),
 results = [];

 for (var i = 0; i < elems.length; i++) {
 if (rest) {
 var parent = elems[i].parentNode;
 while (parent && parent.nodeName != rest) {
 parent = parent.parentNode;
 }

 if (parent) {
 results.push(elems[i]);
 }
 } else {
 results.push(elems[i]);
 }
 }

 return results;
 };

 var divs = find("div");
 assert(divs.length === 2, "Correct number of divs found.");

 var divs = find("div", document.body);
 assert(divs.length === 2,
 "Correct number of divs found in body.");

 var divs = find("body div");
 assert(divs.length === 2,
 "Correct number of divs found in body.");

 var spans = find("div span");
 assert(spans.length === 1, "No duplicate span was found.");
 };

</script>

Listing 15.8 shows the construction of a simple bottom-up selector engine. Note that it
only works one ancestor level deep. In order to work more than one level deep, the
state of the current level would need to be tracked. This would result in two state
arrays: the array of elements that are going to be returned (with some elements being
set to undefined because they don’t match the results), and an array of elements that
correspond to the currently tested ancestor element.

 As mentioned before, this extra ancestor-verification process does end up being slightly
less scalable than the top-down method, but it completely avoids having to use a unique
method for producing non-repetitive output, which some may see as an advantage.
Licensed to Maxeta Technologies <account@maxetatech.com>

359Summary
15.4 Summary
JavaScript-based CSS selector engines are incredibly powerful tools. They give us the
ability to easily locate virtually any DOM element on a page with a trivial amount of
selector syntax. There are many nuances to implementing a full selector engine, but
the situation is rapidly improving as the browsers improve, and there’s no shortage of
tools to help.

 Here’s what we learned in this chapter:

■ Modern browsers are implementing the W3C APIs for element selection, but
they’ve got a long way to go.

■ It still behooves us to create selector engines ourselves, if for no reason other
than performance.

■ To create a selector engine, we can
– Leverage the W3C APIs
– Use XPath
– Traverse the DOM ourselves for optimum performance

■ The top-down approach is most popular, but it requires some cleanup opera-
tions, such as to ensure the uniqueness of elements.

■ A bottom-up approach avoids these operations, but it comes with its own bag of
problems with respect to performance and scalability.

With modern browsers implementing the W3C Selector API, having to worry about the
finer points of selector implementation may soon be a thing of the past. For many
developers, that day can’t come soon enough.
Licensed to Maxeta Technologies <account@maxetatech.com>

Licensed to Maxeta Technologies <account@maxetatech.com>

index
Symbols

^ character 155
. character 155
() operator 49
\ character 155
<% delimiter 225
%> delimiter 225
$ character 155–156

A

add() method 73, 76–77, 137,
188

Added parameter 92
addEvent() method 291, 301–

302, 304–305, 318–319, 321
addEventListener()

method 113, 240, 290
addMethod() method 84
addSubmit() method 318
aFunction() method 103
AJAX issues, and cross-browser

compatibility 249
Ajax, Ajax-Y example 311–312
ajax() method 96–97
alert() method 14
alternation, in regular

expressions 158
animateIt() method 97–98
anonymous functions 37, 39–40,

62–63, 69
answers property 74
API method 331
API performance, and cross-

browser compatibility 249

apply() method 55–56, 58, 77–
78, 101

forcing function context in
callbacks 56–58

invoking functions with 54–58
supplying arguments with 77–

79
args.shift() method 102
Argu-matic utensil 82
arguments 77–86

detecting 79–81
and length property 82–83
list 81
parameter 48, 70–71, 79–83
slicing 81–82
supplying with apply()

method 77–79
traversing 79–81

Array object 76, 138
Array.prototype.push()

method 77
Array() method 138
arrays

array-like methods 76
simulating methods for with

functions 76–77
sorting 37–40

Arrays.sort() method 38
aspect-oriented script tags 209–

210
assert() method 10, 23–24, 37,

63, 271
assertEqual method 224
assertInstanceOf method 224
assertion method, and test

suites 23–24

assignments, in with
statements 218–219

asynchronous testing
asynchronous test suite 189
overview 25–27
with timers 189–190

attachEvent() method 290
attr() method 261, 263, 271
attribute filtering 355
attributes, DOM 255–262

cross-browser
compatibility 262–267
id/name expansion 262–

264
naming for 256
node names 267
style attribute 265
tab index issues 266
type attribute 265–266
URL normalization 264–

265
custom attributes 258
naming restrictions 257
performance

considerations 258–262
style attribute 267–280

and computed styles 282–
285

color formats for 279–280
conversion of pixel

values 271–272
float style property 271
getting properties

from 268–269
height and width

properties 272–276
361

Licensed to Maxeta Technologies <account@maxetatech.com>

INDEX362
attributes, DOM (continued)
naming of properties 270–

271
opacity style property 276–

278
XML vs. HTML 257–258

B

backreferences, in regular
expressions 158

backslash character 155
backward compatibility 239–

240
begin.getTime() method 259
beginning of string,

matching 155–156
benefits, of regular

expressions 152–153
best practices 9–10

performance analysis 10
testing 9–10

bind() method 101–103, 109–
110

bindClick() method 106
binding, event handlers 290–

294, 301–303
<body> tag 35
Boolean property 123
bootMeUp() method 62
borderWidth property 269
bottom-up selector engine 357–

358
braces 43
breakpoints, debugging

using 16–17
browser compatibility,

overview 6–9
browser crashes, and cross-

browser compatibility 248–
249

browser event loop, and
functions 34–36

browser events 34
browsers 229–251

bugs in 232–234
choosing which to

support 230–231
concerns for

development 231–242
browser bugs 232–234
living with external

code 234–239
missing features 239–240
regressions 240–242

for DOM attributes 262–267
id/name expansion 262–

264
naming for 256
node names 267
style attribute 265
tab index issues 266
type attribute 265–266
URL normalization 264–

265
minimizing assumptions 249–

251
missing features in 239–240

backward
compatibility 239–240

graceful degradation 239
regressions in 240–242

anticipating changes 240–
241

unpredictable bugs 241–242
strategies for 242–249

AJAX issues 249
API performance 249
browser crashes 248–249
CSS property effects 248
event firing 248
event-handler bindings 248
feature simulation 245–247
incongruous APIs 249
object detection 243–244
safe cross-browser

fixes 242–243
bubbling, of events 316–324

change events 319–321
focusin and focusout

events 321–322
mouseenter and mouseleave

events 322–324
submit events 317–319

button.click() method 100

C

Caja 200–201
call() method, invoking func-

tions with 54–58
callbacks

callback() method 36–37
concept of 36–37
forcing function context

in 56–58
using closures from 96–99

callee property
overview 143
recursion using 70–71

canFly() method 41
captures 158
capturing matches, with regular

expressions 161–166
non-capturing groups 165–

166
overview 161–162
referencing captures 163–165
using global expressions 162–

163
caret character 155
caveats, for prototypes 135–143

extending Number 136–137
extending Object 135–136
instantiation issues 139–143
subclassing native

objects 137–139
central timer control 187, 189
change events, bubbling 319–

321
character class operator 155
characters classes, in regular

expressions
overview 155
predefined 156–157

chirp property 66, 69
chirp() method 65–68
chirping 65
Class() method 145
class-like code, with

prototypes 143–150
checking for function

serializability 146–147
initialization of subclasses 147
preserving

supermethods 148–150
clearing timers 176–177
clearInterval() method 176
clearTimeout() method 176, 188
click handler 178
click() method 96
clone() method 339
cloneNode() method 329, 338
cloning elements 338–339
Closure Compiler, Google 208
closures 89–118

binding function contexts
using 99–103

creating private variables
using 94–96

immediate functions 111–118
enforcing names in scope

via parameters 113–114
keeping code readable with

shorter names 114–115
Licensed to Maxeta Technologies <account@maxetatech.com>

INDEX 363
closures (continued)
library wrapping with 117–

118
and loops 115–117
self-contained scope

of 112–113
overriding function

behavior 106–110
with function

wrapping 109–110
with memoization 106–

109
overview 90–94
partially applying functions

with 103–106
using from callbacks 96–99

code evaluation, runtime 193–
214

decompiling already-evalu-
ated code 201–204

example using 204–213
aspect-oriented script

tags 209–210
and compression 206–208
converting JSON 204–205
dynamic code

rewriting 208–209
importing namespaced

code 205–206
and obfuscation 206–208
using DSLs 210–213

in global scope 198–199
security for 199–201
via Function constructor 197
with eval() method 194–197

overview 194–195
return result from 195–

197
with timers 197

code, debugging 17
color formats, for style

attribute 279–280
comma-separated value. See CSV
compare() method 39
compiling regular

expressions 158–161
compression, and runtime code

evaluation 206–208
computed style, for DOM

elements 282–285
console.log() method 14–15
constructive tests 18
constructors

instantiating prototypes using
reference to 127–128

invoking functions as 52–54
considerations for 54
overview 52–54

context, for functions
binding using closures 99–103
forcing in callbacks 56–58

converting
JSON 204–205
pixel values 271–272

createContextualFragment()
method 330

createElement() method 330
Creates object 50, 72, 196
createTextNode() method 343
creep() method 50–54
Crockford, Douglas 204, 215
cross-browser

compatibility 229–251
choosing browsers to

support 230–231
concerns for

development 231–242
browser bugs 232–234
living with external

code 234–239
missing features 239–240
regressions 240–242

for DOM attributes 262–267
id/name expansion 262–

264
naming for 256
node names 267
style attribute 265
tab index issues 266
type attribute 265–266
URL normalization 264–

265
minimizing assumptions 249–

251
overview 6–9
strategies for 242–249

AJAX issues 249
API performance 249
browser crashes 248–249
CSS property effects 248
event firing 248
event-handler bindings 248
feature simulation 245–247
incongruous APIs 249
object detection 243–244
safe cross-browser

fixes 242–243
cross-browser development 9
CSS property effects, and cross-

browser compatibility 248

CSS selector engines 345–359
DOM implementation 351–

358
bottom-up selector

engine 357–358
filtering sets 355–356
finding elements 354–355
parsing selector 353–354
recursing and

merging 356–357
using XPath with 349–351
W3C Selectors API 347–349

CSV (comma-separated
value) 103

csv() method 104
cur.nodeName.toLowerCase()

method 336
curry() method 105
currying 103
custom attributes 258

D

Date() method 10, 219–220,
259

debugging 14–17
code 17
logging statements 14–16
using breakpoints 16–17

Declares object 85
declaring functions 40–45
decompiling already-evaluated

code 201–204
deconstructive tests 18
delay() method 105
delegating events 315–316
describe() method 208
detecting arguments 79–81
developers, testing tools 21
dialog() method 80–81
display() method 211
<div> element 96, 116, 245, 255,

269, 274
doc.createDocumentFrag-

ment() method 335
document object model. See

DOM
document ready event 324–326
document.body.style 222
document.getElementById()

method 263
document.getElementsByTag-

Name 244, 246
document.write() method 33
dollar sign character 156
Licensed to Maxeta Technologies <account@maxetatech.com>

INDEX364
DOM (document object
model) 329–344

cloning elements 338–339
injecting HTML into 330–338

executing scripts 336–338
generating DOM 333–334
inserting into

document 334–336
processing source

string 331–332
wrapping HTML 332–333

removing elements 340–341
text contents of

elements 341–344
getting 343–344
setting 342–343

DOM attributes 255–262
computed style 282–285
cross-browser

compatibility 262–267
id/name expansion 262–

264
naming for 256
node names 267
style attribute 265
tab index issues 266
type attribute 265–266
URL normalization 264–

265
custom attributes 258
naming restrictions 257
performance

considerations 258–262
style attribute 267–280

color formats for 279–280
and computed styles 282–

285
conversion of pixel

values 271–272
float style property 271
getting properties

from 268–269
height and width

properties 272–276
naming of properties 270–

271
opacity style property 276–

278
XML vs. HTML 257–258

DOM elements
overview 87
self-memoizing functions

for 75
DOM method 255, 257–260,

291

domain-specific languages. See
DSLs

doScrollCheck() method 326
doSomethingWonderful()

method 54
double backslash character 155
DSLs (domain-specific

languages) 210–213
Objective-J 212–213
processing.js 210–212

dynamic code rewriting 208–
209

E

e.target.nodeName.toLower-
Case() method 320

ECMAScript 5 215
Edwards, Dean 4, 206
elem.documentElement.node-

Name.toLowerCase()
method 258

elem.nodeName.toLowerCase()
method 242, 318, 320, 336

Element._attributeTranslations
.read.values 115

element.style.cssText 265
element-rooted queries 348
elements

cloning 338–339
finding 354–355
recursing 356–357
removing 340–341
text contents of 341–344

getting 343–344
setting 342–343

embedded values 161
empty() method 343
encapsulating code 235–236
end of string, matching 155–

156
engines 345–359

DOM implementation 351–
358
bottom-up selector

engine 357–358
filtering sets 355–356
finding elements 354–355
parsing selector 353–354
recursing and

merging 356–357
using XPath with 349–351
W3C Selectors API 347–349

escaping characters, in regular
expressions 155

eval() method 5, 194–198, 213
overview 194–195
return result from 195–197

event firing, and cross-browser
compatibility 248

Event object 294, 297
event-handler bindings, and

cross-browser
compatibility 248

events 289–327
bubbling of 316–324

change events 319–321
focusin and focusout

events 321–322
mouseenter and mouse-

leave events 322–324
submit events 317–319

delegating 315–316
document ready event 324–

326
event object 294–297
handlers for 297–309

binding 290–294, 301–303
cleaning up after 303–305
smoke-testing 307–309
storing associated informa-

tion for 298–300
unbinding 290–294, 305–

307
triggering custom events 309–

314
Ajax-Y example 311–312
loose coupling 311

exact matching, with regular
expressions 154–155

exec() method 163, 173, 203
executing scripts, when injecting

HTML into DOM 336–338
expressions, regular 151–173

alternation 158
backreferences 158
beginning of string 155–156
benefits of 152–153
capturing matching

segments 161–166
non-capturing groups 165–

166
overview 161–162
referencing captures 163–

165
using global

expressions 162–163
characters classes

overview 155
predefined 156–157
Licensed to Maxeta Technologies <account@maxetatech.com>

INDEX 365
expressions, regular (continued)
compiling 158–161
end of string 155–156
escaping characters 155
exact matching 154–155
examples using 168–172

matching escaped
characters 172

matching newlines 170–
171

matching Unicode
characters 171–172

trimming strings 168–170
grouping 157–158
overview 153–154
repeated occurrences 156
using with replace()

method 166–168
external code, living

alongside 234–239
avoiding implanted

properties 236–237
coping with greedy ids 237–

238
dealing with less-than-

exemplary code 236
encapsulating code 235–236
order of stylesheets 238–239

F

feature simulation, and cross-
browser compatibility 245–
247

feint() method 94–95
fetchComputedStyle()

method 282
FIFO (first-in, first-out) 35
filter property 152, 162
filtering sets 355–356
finally block 348–349
find() method 85–86
finding elements 354–355
Firebug 14
Firefox 87
first-class objects 31–34, 37, 40,

55, 58
first-in, first-out. See FIFO
Fitzgerald, Michael 153
fixEvent() method 303
float style property 271
fn.toString() method 88, 202,

209
focusin and focusout events,

bubbling 321–322

for loop 116
forEach() method 57, 132–133
for-in statement 80
<form> element 262
frameworks, for testing 19–22

JsUnit 22
QUnit 21–22
YUI Test 22

Friedl, Jeffrey 153
Function constructor

overview 15
runtime code evaluation

with 197
function context

binding using closures 99–103
overview 48

function keyword 40
function prototypes 119–150

and instance properties 122–
123

and reconciling property
references 123–127

caveats for 135–143
extending Number 136–

137
extending Object 135–136
instantiation issues 139–

143
subclassing native

objects 137–139
class-like code with 143–150

checking for function
serializability 146–147

initialization of
subclasses 147

preserving
supermethods 148–150

HTML DOM prototypes 133–
134

inheritance with 128–133
instantiating using reference

to constructor 127–128
overview 120–122

function serialization 146
functionName() method 111
functions 31–59, 61–88

anonymous functions 62–63
arguments for 77–86

detecting 79–81
and length property 82–83
slicing 81–82
supplying with apply()

method 77–79
traversing 79–81

checking for 86–88

checking for serializability
of 146–147

declaring 40–45
immediate functions 111–118

enforcing names in scope
via parameters 113–114

keeping code readable with
shorter names 114–115

library wrapping with 117–
118

and loops 115–117
self-contained scope

of 112–113
importance of in

JavaScript 33–37
anonymous functions 37–

40
are first-class objects 34
and browser event loop 34–

36
callback concept 36–37

invoking as constructor 52–54
considerations for 54
overview 52–54

invoking as function 49
invoking as method 50–52
invoking with apply and call

methods 54–58
overloading 82–86
overriding behavior of 106–

110
with function

wrapping 109–110
with memoization 106–109

parameters for 47–49
partially applying, with

closures 103–106
recursion 64–71

in inline named
functions 68–70

and missing reference
problem 66–67

in named functions 64–65
with object methods 65–66
using callee property 70–71

scope of 43–45
self-memoizing 73–75

for dom elements 75
for expensive

computations 73–75
simulating array methods

with 76–77
storing 72–73
wrapping, overriding func-

tion behavior with 109–110
Licensed to Maxeta Technologies <account@maxetatech.com>

INDEX366
G

garbage collection 186
gather() method 76–77
generateRows() method 184
getAllElements() method 246
getAttribute() method 255,

258–260, 264–265
getComputedProperty()

method 282
getData() method 299–300
getDimensions() method 278,

280
getElementById() method 349,

351, 354
getElementsByClassName()

method 351, 355
getElementsByName()

method 355
getElementsByTagName()

method 245, 349, 351,
355

getFeints() method 94–95
getNodes() method 335
getPropertyValue()

method 282–283
getVal() method 321
Giammarchi, Andrea 198
global expressions 162–163
global scope, runtime code eval-

uation in 198–199
globalEval() method 199, 210
good tests 17–19
Goyvaerts, Jan 153
graceful degradation 239
graded browser support 6
graphical user interface.

See GUI
greedy operators 156
grouping, in regular

expressions 157–158
GUI (graphical user

interface) 34

H

handlers, event 297–309
binding 290–294, 301–303
cleaning up after 303–305
smoke-testing 307–309
storing associated information

for 298–300
unbinding 290–294, 305–307

hasOwnProperty() method 136,
236–237

<head> element 199
height attribute 271
height property 272–276
hover() method 323
HTML (HyperText Markup Lan-

guage)
DOM attributes for 257–258
injecting into DOM 330–338

executing scripts 336–338
generating DOM 333–334
inserting into

document 334–336
processing source

string 331–332
wrapping HTML 332–333

HTML DOM prototypes 133–
134

HTML tag 164
HTMLElement() method 134
htmlFor property 257
HyperText Markup Language.

See HTML

I

id attribute
cross-browser

compatibility 262–264
overview 255–256

IE Developer Tools 14
IE-proprietary method 241
if statement 43
if-else block 109
 tag 271
immediate functions 111–118

enforcing names in scope via
parameters 113–114

keeping code readable with
shorter names 114–115

library wrapping with 117–
118

and loops 115–117
self-contained scope of 112–

113
implicit parameters 48
importing

namespaced code 205–206
namespaced code using with

statements 223
incongruous APIs, and cross-

browser compatibility 249
indexOf() method 162
inheritance, with

prototypes 128–133
init() method 144–145, 147

injecting HTML, into
DOM 330–338

executing scripts 336–338
generating DOM 333–334
inserting into document 334–

336
processing source string 331–

332
wrapping HTML 332–333

inline named functions, recur-
sion in 68–70

inner() method 41–45
innerFunction() method 91
innerHTML property 331,

344
Input type 265–266
input#action element 238
input#submit element 238
<input> element 265–266
insertAdjacentHTML()

method 331
instance properties, and

prototypes 122–123
Internet Explorer 87
intervals, for timers 179–180
invoke handlers 34
isDeadly() method 41
isEmpty() method 304
isFunction() method 87
isInForm() method 318
isNimble() method 40–42
isPrime variable 108
isPrime() method 74, 107–108
isSharp property 217–218

J

JavaScript file 206
JavaScript object 32, 132–133,

204, 236
JavaScript Object Notation. See

JSON
JavaScript type 103
JavaScript, language

overview 5–6
jQuery.clean method 339
jQuery.noConflict()

method 113
jQuery.tmpl() method 210
jQuery() method 118
JS Bin 19
JSON (JavaScript Object

Notation) 204–205
JsUnit 22
juggle() method 55
Licensed to Maxeta Technologies <account@maxetatech.com>

INDEX 367
K

katana.use() method 217
keys() method 135
Kleene, Stephen 153
Kovalyov, Anton 205, 235
KungFuPanda() method 54

L

Laddad, Ramnivas 209
length property 76–77, 82–83,

86
letter.toUpperCase()

method 166, 270, 283
Levithan, Steven 153, 169
 element 23
libraries, overview 4–5
library wrapping, with immedi-

ate functions 117–118
listeners 34
load event 35
log() method 15–17
logging statements, debugging

using 14–16
long-running processes, and

timers 183–186
long-running tasks 184
loops

and immediate
functions 115–117

single-threaded 35
loose coupling, of events 311

M

match() method 162–163, 173
Math.max() method 78, 81
Math.min() method 79
max() method 78, 81
memoization, overriding func-

tion behavior with 106–109
memoize() method 108
memoized() method 106–108
merge() method 80
method-overloading

function 84
Mikowski, Michael 205
min() method 78
missing features in browsers

backward compatibility 239–
240

graceful degradation 239
missing reference problem, and

recursion 66–67

mouseenter and mouseleave
events, bubbling 322–324

mousemove events 36
mouseout event 248
mouseover event 248
Mozilla 233
multiple attribute 333
multiple timers, managing 186–

189
MyArray() method 138–139
myFunction() method 102–

103
myNinja() method 69

N

name attribute, cross-browser
compatibility 262–264

name property 63
named functions, recursion

in 64–65
namespaced code

importing 205–206
importing using with

statements 223
naming, for DOM attributes

cross-browser
compatibility 256

restrictions on 257
native objects, subclassing 137–

139
network events 34
nextId property 73
Ninja class 128, 144
ninja variable 195
ninja.chirp property 67
ninja.chirp reference 67
ninja.chirp() method 66–67
ninja.constructor() method

128
ninja.feint() method 94
ninja.shout() method 62
ninja() method 49, 70, 72–73,

86, 235
node names, cross-browser

compatibility 267
Node object 247
Node.COMMENT_NODE 247
Node.ELEMENT_NODE 247
nodeName property 267
nonblocking operations 183
non-capturing groups, in regular

expressions 165–166
nongreedy operators 156
noStroke() method 211

Number, extending caveats
for 136–137

numClicks variable 113

O

obfuscation, and runtime code
evaluation 206–208

object detection, and cross-
browser compatibility 243–
244

object methods, recursion
with 65–66

Object, extending caveats
for 135–136

Object.getOwnProperty-
Names() method 237

Object.prototype method 88,
236

<object> element 87
Objective-J 212–213
offsetHeight property 272
offsetWidth property 272
on() method 114
onload attribute 35
onload property 35
opacity style property 276–278
Opera Dragonfly 14
<option> element 332
outer() method 41–45
outerFunction() method 90–93
outerHTML property 339, 341
overloading functions 82–86

P

Packer 206–207
parameters

for functions 47–49
for immediate functions 113–

114
paramname === undefined

expression 80
parse() method 204
parseFloat method 272
parsing selectors 353–354
partial() method 104
partially applying functions, with

closures 103–106
passive subexpression 165, 171
pause() method 26–27, 190
performance

using DOM attributes 258–
262

of with statements 219–221
Licensed to Maxeta Technologies <account@maxetatech.com>

INDEX368
performance analysis,
overview 10

period character 155
Person class 144, 147
Person() method 129–130, 147
pixel values, converting 271–

272
popMatrix() method 211
Populates class 146
position filtering 356
postError() method 14
Powell, John 205
private variables, creating using

closures 94–96
processing.js 210–212
properties

from style attribute
getting 268–269
naming for 270–271

implanted 236–237
instance, and prototypes 122–

123
reconciling references

to 123–127
referencing in with

statements 216–217
prototypes 119–150

caveats for 135–143
extending Number 136–

137
extending Object 135–136
instantiation issues 139–

143
subclassing native

objects 137–139
class-like code with 143–150

checking for function
serializability 146–147

initialization of
subclasses 147

preserving
supermethods 148–150

HTML DOM prototypes 133–
134

inheritance with 128–133
and instance properties 122–

123
instantiating using reference

to constructor 127–128
overview 120–122
and reconciling property

references 123–127
proxy() method 309
push() method 77
pushMatrix() method 211

Q

querySelector() method 345,
347

querySelectorAll() method 345,
347, 351

queue.push() method 25
queue.shift() method 26, 189
QUnit 21–22

R

range.createContextualFrag-
ment() method 330

readAttribute() method 109–
110

ready() method 325–326
reconciling property

references 123–127
recursing elements 356–357
recursion 64–71

in inline named
functions 68–70

and missing reference
problem 66–67

in named functions 64–65
with object methods 65–66
using callee property 70–71

referencing properties, in with
statements 216–217

RegExp object 153
RegExp() method 160
regressions in browsers 240–242

anticipating changes 240–241
unpredictable bugs 241–242

regular expressions 151–173
alternation 158
backreferences 158
beginning of string 155–156
benefits of 152–153
capturing matching

segments 161–166
non-capturing groups 165–

166
overview 161–162
referencing captures 163–

165
using global

expressions 162–163
characters classes

overview 155
predefined 156–157

compiling 158–161
end of string 155–156
escaping characters 155

exact matching 154–155
examples using 168–172

matching escaped
characters 172

matching newlines 170–
171

matching unicode
characters 171–172

trimming strings 168–170
grouping 157–158
overview 153–154
repeated occurrences 156
using with replace()

method 166–168
reliability, of timers 180–183
remove() method 134, 340
removeChild() method 329,

340
removeData() method 299–300
removeEvent() method 291,

293, 307, 312, 322
removeSubmit() method 319
removing elements 340–341
repeated occurrences, in regular

expressions 156
repeating timers 179
repeatMe() method 179
replace() method, using regular

expressions with 166–168
restrictions, naming DOM

attributes 257
results variable 25
resume() method 26–27, 189–

190
returnFalse() method 294
returnTrue() method 294
ronin property 237
runNext() method 187
runTest() method 26–27, 189–

190
runtime code evaluation 193–

214
decompiling already-evalu-

ated code 201–204
example using 204–213

aspect-oriented script
tags 209–210

and compression 206–208
converting JSON 204–205
dynamic code

rewriting 208–209
importing namespaced

code 205–206
and obfuscation 206–208
using DSLs 210–213
Licensed to Maxeta Technologies <account@maxetatech.com>

INDEX 369
runtime code evaluation
(continued)

in global scope 198–199
security for 199–201
via Function constructor 197
with eval() method 194–197

overview 194–195
return result from 195–197

with timers 197

S

Safari 87
samurai object 67
samurai.chirp property 67
samurai.chirp() method 67
samurai() method 49, 54
scope

of functions 43–45
of immediate functions 112–

113
scoping behavior 44
Screw.Unit library 208
script.aculo.us library 224
<script> tag 194, 198–199, 226
scripts, executing 336–338
security, for runtime code

evaluation 199–201
selector engines 345–359

DOM implementation 351–
358
bottom-up selector

engine 357–358
filtering sets 355–356
finding elements 354–355
parsing selector 353–354
recursing and

merging 356–357
using XPath with 349–351
W3C Selectors API 347–349

selectors, parsing 353–354
self-memoizing functions 73–75

for dom elements 75
for expensive

computations 73–75
set operator 155
setAttribute() method 255,

258–260
setInterval() method 180–181,

197
Sets type 265
sets, filtering 355–356
setTimeout() method 62–63,

180–181, 197
single function 51

single-threaded loop 35
skulk() method 50–51, 53–54
slice() method 81–82
slicing arguments 81–82
slider.dispose() method 224
smallest() method 79
Smith, Garrett 263
smoke-testing, event

handlers 307–309
sneak() method 50, 54
Some.long.reference.to

.something 115
someFunction() method 111
sort() method 39
sorting arrays 37–40
 elements 356–357
SpinSpots() method 211
split() method 103–104
square brackets 155
src property 254
start() method 188, 190
startup() method 34
statements 215–227

assignments in 218–219
examples using 221–223
importing namespaced

code 223
performance

considerations 219–221
referencing properties

in 216–217
templating using 224–227
testing 223–224

storing functions 72–73
strategies, for cross-browser

compatibility 242–249
AJAX issues 249
API performance 249
browser crashes 248–249
CSS property effects 248
event firing 248
event handler bindings 248
feature simulation 245–247
incongruous APIs 249
object detection 243–244
safe cross-browser fixes 242–

243
String object 162, 166, 168
String.prototype.escapeHTML

221
String.trim() method 168
style attribute

color formats for 279–280
and computed styles 282–

285

conversion of pixel
values 271–272

cross-browser
compatibility 265

float style property 271
getting properties from 268–

269
height and width

properties 272–276
naming of properties 270–

271
opacity style property 276–278

style() method 271–272
<style> elements 35, 268
stylesheets, order of 238–239
subClass() method 144–145,

147–148
subclasses

initialization of 147
for native objects 137–139

submit events, bubbling 317–
319

SuperClass() method 130
superMethod() method 211
supermethods, preserving 148–

150
swingsSword() method 41
swingSword() method 121–123,

126, 144

T

tab index, cross-browser
compatibility 266

tabIndex property 266
<tbody> element 334
templating, using with

statements 224–227
test grouping 24
test() method 27, 142, 146, 161,

190, 204
test(fn) method 27
testing

frameworks for 19–22
JsUnit 22
QUnit 21–22
YUI Test 22

making of good tests 17–19
overview 9–10
test suites 22–27

and assertion method 23–
24

asynchronous testing 25–27
test groups in 24–25

with statements 223–224
Licensed to Maxeta Technologies <account@maxetatech.com>

INDEX370
TestSwarm 22
text contents of elements 341–

344
getting 343–344
setting 342–343

text parameter 64
textContent property 341
this parameter

for functions 48–49
overview 46, 53–54

this._super() method 144–
145

this.assertEqual 224
this.stopPropagation()

method 295
tidyUp() method 304, 306
timeout handler 178
timeouts, overview 179–180
timers 175–190

asynchronous testing
with 189–190

clearing 176–177
events 34
intervals 179–180
and long-running

processes 183–186
managing multiple 186–189
reliability of 180–183
runtime code evaluation

with 197
setting 176–177
and thread 177–179
timeouts 179–180
timerID member 188

timers.start() method 188
timing diagram 177
toLowerCase() method 336
toString() method 87–88, 146,

159, 202–204, 213
traversing arguments 79–81
triggerChangeIfValue-

Changed() method 321

triggering custom events 309–
314

Ajax-Y example 311–312
loose coupling 311

trim() method 170
try/catch block 349
type attribute, cross-browser

compatibility 265–266

U

unbinding, event handlers 290–
294, 305–307

unique() method 357
URL normalization, cross-

browser compatibility 264–
265

User class 139–140
user events 34
User() method 140
utility functions 235

V

values.sort() method 38
variables, private 94–96
Vinegar, Ben 205, 235
visibility property 273

W

W3C Selectors API 347–349
WebKit Developer Tools 14
width property 272–276
window object 218, 223
window.canFly 42
window.getComputedStyle()

method 282
window.isDeadly 42
window.isNimble 42
window.parseFloat()

method 278

with statements 215–227
assignments in 218–219
examples using 221–223
importing namespaced

code 223
performance

considerations 219–221
referencing properties

in 216–217
templating using 224–227
testing 223–224

withinElement() method
324

wrap() method 109–110
wrapping functions, overriding

function behavior
with 109–110

Writing class 143
WRONG DOCUMENT ERR

note, Mozilla 233

X

XML, DOM attributes for 257–
258

XMLHttpRequest 178, 189
XMLHttpRequest object 241,

249
XPath, using with CSS selector

engines 349–351

Y

YUI (Yahoo! UI)
overview 4
YUI Compressor 207–208
YUI Test 22

Z

Zaytsev, Juriy 263
Licensed to Maxeta Technologies <account@maxetatech.com>

	Front cover
	brief contents
	contents
	preface
	acknowledgments
	John Resig
	Bear Bibeault

	about this book
	Audience
	Roadmap
	Code conventions
	Code downloads
	Author online
	About the cover illustration

	about the authors
	Part 1—Preparing for training
	1 Enter the ninja
	1.1 The JavaScript libraries we’ll be tapping
	1.2 Understanding the JavaScript language
	1.3 Cross-browser considerations
	1.4 Current best practices
	1.4.1 Current best practice: testing
	1.4.2 Current best practice: performance analysis

	1.5 Summary

	2 Arming with testing and debugging
	2.1 Debugging code
	2.1.1 Logging
	2.1.2 Breakpoints

	2.2 Test generation
	2.3 Testing frameworks
	2.3.1 QUnit
	2.3.2 YUI Test
	2.3.3 JsUnit
	2.3.4 Newer unit-testing frameworks

	2.4 The fundamentals of a test suite
	2.4.1 The assertion
	2.4.2 Test groups
	2.4.3 Asynchronous testing

	2.5 Summary

	Part 2—Apprentice training
	3 Functions are fundamental
	3.1 What’s with the functional difference?
	3.1.1 Why is JavaScript’s functional nature important?
	3.1.2 Sorting with a comparator

	3.2 Declarations
	3.2.1 Scoping and functions

	3.3 Invocations
	3.3.1 From arguments to function parameters
	3.3.2 Invocation as a function
	3.3.3 Invocation as a method
	3.3.4 Invocation as a constructor
	3.3.5 Invocation with the apply() and call() methods

	3.4 Summary

	4 Wielding functions
	4.1 Anonymous functions
	4.2 Recursion
	4.2.1 Recursion in named functions
	4.2.2 Recursion with methods
	4.2.3 The pilfered reference problem
	4.2.4 Inline named functions
	4.2.5 The callee property

	4.3 Fun with function as objects
	4.3.1 Storing functions
	4.3.2 Self-memoizing functions
	4.3.3 Faking array methods

	4.4 Variable-length argument lists
	4.4.1 Using apply() to supply variable arguments
	4.4.2 Function overloading

	4.5 Checking for functions
	4.6 Summary

	5 Closing in on closures
	5.1 How closures work
	5.2 Putting closures to work
	5.2.1 Private variables
	5.2.2 Callbacks and timers

	5.3 Binding function contexts
	5.4 Partially applying functions
	5.5 Overriding function behavior
	5.5.1 Memoization
	5.5.2 Function wrapping

	5.6 Immediate functions
	5.6.1 Temporary scope and private variables
	5.6.2 Loops
	5.6.3 Library wrapping

	5.7 Summary

	6 Object-orientation with prototypes
	6.1 Instantiation and prototypes
	6.1.1 Object instantiation
	6.1.2 Object typing via constructors
	6.1.3 Inheritance and the prototype chain
	6.1.4 HTML DOM prototypes

	6.2 The gotchas!
	6.2.1 Extending Object
	6.2.2 Extending Number
	6.2.3 Subclassing native objects
	6.2.4 Instantiation issues

	6.3 Writing class-like code
	6.3.1 Checking for function serializability
	6.3.2 Initialization of subclasses
	6.3.3 Preserving super-methods

	6.4 Summary

	7 Wrangling regular expressions
	7.1 Why regular expressions rock
	7.2 A regular expression refresher
	7.2.1 Regular expressions explained
	7.2.2 Terms and operators

	7.3 Compiling regular expressions
	7.4 Capturing matching segments
	7.4.1 Performing simple captures
	7.4.2 Matching using global expressions
	7.4.3 Referencing captures
	7.4.4 Non-capturing groups

	7.5 Replacing using functions
	7.6 Solving common problems with regular expressions
	7.6.1 Trimming a string
	7.6.2 Matching newlines
	7.6.3 Unicode
	7.6.4 Escaped characters

	7.7 Summary

	8 Taming threads and timers
	8.1 How timers and threading work
	8.1.1 Setting and clearing timers
	8.1.2 Timer execution within the execution thread
	8.1.3 Differences between timeouts and intervals

	8.2 Minimum timer delay and reliability
	8.3 Dealing with computationally expensive processing
	8.4 Central timer control
	8.5 Asynchronous testing
	8.6 Summary

	Part 3—Ninja training
	9 Ninja alchemy: runtime code evaluation
	9.1 Code evaluation mechanisms
	9.1.1 Evaluation with the eval() method
	9.1.2 Evaluation via the Function constructor
	9.1.3 Evaluation with timers
	9.1.4 Evaluation in the global scope
	9.1.5 Safe code evaluation

	9.2 Function “decompilation”
	9.3 Code evaluation in action
	9.3.1 Converting JSON
	9.3.2 Importing namespaced code
	9.3.3 JavaScript compression and obfuscation
	9.3.4 Dynamic code rewriting
	9.3.5 Aspect-oriented script tags
	9.3.6 Metalanguages and DSLs

	9.4 Summary

	10 With statements
	10.1 What’s with “with”?
	10.1.1 Referencing properties within a with scope
	10.1.2 Assignments within a with scope
	10.1.3 Performance considerations

	10.2 Real-world examples
	10.3 Importing namespaced code
	10.4 Testing
	10.5 Templating with “with”
	10.6 Summary

	11 Developing cross-browser strategies
	11.1 Choosing which browsers to support
	11.2 The five major development concerns
	11.2.1 Browser bugs and differences
	11.2.2 Browser bug fixes
	11.2.3 Living with external code and markup
	11.2.4 Missing features
	11.2.5 Regressions

	11.3 Implementation strategies
	11.3.1 Safe cross-browser fixes
	11.3.2 Object detection
	11.3.3 Feature simulation
	11.3.4 Untestable browser issues

	11.4 Reducing assumptions
	11.5 Summary

	12 Cutting through attributes, properties, and CSS
	12.1 DOM attributes and properties
	12.1.1 Cross-browser naming
	12.1.2 Naming restrictions
	12.1.3 Differences between XML and HTML
	12.1.4 Behavior of custom attributes
	12.1.5 Performance considerations

	12.2 Cross-browser attribute issues
	12.2.1 DOM id/name expansion
	12.2.2 URL normalization
	12.2.3 The style attribute
	12.2.4 The type attribute
	12.2.5 The tab index problem
	12.2.6 Node names

	12.3 Styling attribute headaches
	12.3.1 Where are my styles?
	12.3.2 Style property naming
	12.3.3 The float style property
	12.3.4 Conversion of pixel values
	12.3.5 Measuring heights and widths
	12.3.6 Seeing through opacity
	12.3.7 Riding the color wheel

	12.4 Fetching computed styles
	12.5 Summary

	Part 4—Master training
	13 Surviving events
	13.1 Binding and unbinding event handlers
	13.2 The Event object
	13.3 Handler management
	13.3.1 Centrally storing associated information
	13.3.2 Managing event handlers

	13.4 Triggering events
	13.4.1 Custom events

	13.5 Bubbling and delegation
	13.5.1 Delegating events to an ancestor
	13.5.2 Working around browser deficiencies

	13.6 The document ready event
	13.7 Summary

	14 Manipulating the DOM
	14.1 Injecting HTML into the DOM
	14.1.1 Converting HTML to DOM
	14.1.2 Inserting into the document
	14.1.3 Script execution

	14.2 Cloning elements
	14.3 Removing elements
	14.4 Text contents
	14.4.1 Setting text
	14.4.2 Getting text

	14.5 Summary

	15 CSS selector engines
	15.1 The W3C Selectors API
	15.2 Using XPath to find elements
	15.3 The pure-DOM implementation
	15.3.1 Parsing the selector
	15.3.2 Finding the elements
	15.3.3 Filtering the set
	15.3.4 Recursing and merging
	15.3.5 Bottom-up selector engine

	15.4 Summary

	index
	Symbols
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Y
	Z

	Back cover

